K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2021

em ko biết em chỉ tim thui 

có ai làm cho cisuuuuuuuuuuuuuuuuu ko

8 tháng 8 2017

1/ \(M=x^2-2x.15+225-198\)

\(M=\left(x-15\right)^2-198\ge-198\)

\(Min\)\(M=-198\Leftrightarrow x=15\)

20 tháng 6 2018

Đặt \(f\left(x\right)=-x^2-2x-3\)

\(=-x^2-x-x-3\)

\(=-x.\left(x-1\right)-\left(x-1\right)-2\)

\(=-[-\left(x-1\right)^2]-2\le-2< 0\)

\(\Rightarrow\)Đa thức không có nghiệm

20 tháng 6 2018

Đặt \(A=-x^2-2x-3\)

\(\Rightarrow-A=x^2+2x+3\)

\(-A=\left(x^2+2x+1\right)+2\)

\(-A=\left(x+1\right)^2+2\)

\(\Rightarrow A=-\left(x+1\right)^2-2\)

Ta có: \(-\left(x+1\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+1\right)^2-2\le2\forall x\)

\(\Rightarrow\) Đa thức vô nghiệm

a: \(M=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{6}{3\left(x-2\right)}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)

\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right):\dfrac{x^2-4+10-x^2}{x+2}\)

\(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}\)

\(=\dfrac{-1}{x-2}\)

b: Để M đạt giá trị lớn nhất thì x-2=-1

hay x=1

c: Để M=3x thì \(\dfrac{-1}{x-2}=3x\)

\(\Leftrightarrow3x^2-6x+1=0\)

\(\text{Δ}=\left(-6\right)^2-4\cdot3\cdot1=36-12=24\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{6-2\sqrt{6}}{6}=\dfrac{3-\sqrt{6}}{3}\\x_2=\dfrac{3+\sqrt{6}}{3}\end{matrix}\right.\)

6 tháng 10 2019

a) \(8x^3-x=0\)

\(\Leftrightarrow x\left(8x^2-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\8x^2-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{\frac{1}{8}}\end{cases}}\)

b) \(x\left(x-5\right)=2x-10\)

\(\Leftrightarrow x\left(x-5\right)=2\left(x-5\right)\)

\(\Leftrightarrow x\left(x-5\right)-2\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=5\end{cases}}\)

6 tháng 10 2019

c) \(3x^2+30x=-75\)

\(\Leftrightarrow x^2+10x=-25\)

\(\Leftrightarrow x^2+10x+25=0\)

\(\Leftrightarrow\left(x+5\right)^2=0\)

\(\Leftrightarrow x+5=0\Leftrightarrow x=-5\)

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

15 tháng 7 2017

x-x^2 = -(x^2-x) = -[(x-1/2)^2 -1/4] =-(x-1/2)^2 +1/4 <= 1/4 

Vậy giá trị lớn nhất là 1/4 khi x=1/2 

29 tháng 8 2018

1) ta có : \(x^2+5y^2-4xy+2y=3\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=2\)

\(\Leftrightarrow\left(x-2y\right)^2=2-\left(y+1\right)^2\ge0\) \(\Leftrightarrow2\ge\left(y+1\right)^2\Leftrightarrow-\sqrt{2}\le y+1\le\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}-1\le y\le\sqrt{2}-1\)

ta lại có : \(\left(y+1\right)^2=2-\left(x-2y\right)^2\ge0\)

\(\Leftrightarrow2\ge\left(x-2y\right)^2\Leftrightarrow-\sqrt{2}\le x-2y\le\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}+2y\le x\le\sqrt{2}+2y\Leftrightarrow-2-3\sqrt{2}\le x\le-2+3\sqrt{2}\)

vậy \(x_{max}=-2+3\sqrt{2}\)

dâu "=" xảy ra khi \(y=\sqrt{2}-1\)

29 tháng 8 2018

câu 3 : ta có : \(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Leftrightarrow y^2=-\left(x+y\right)^2-7\left(x+y\right)-10\ge0\)

\(\Leftrightarrow-5\le x+y\le-2\)

\(\Rightarrow S_{max}=-2\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-2\end{matrix}\right.\Leftrightarrow y=0;x=-2\)

\(S_{min}=-5\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-5\end{matrix}\right.\Leftrightarrow y=0;x=-5\)

bài này có trong đề thi hsg trường mk :)

4 tháng 8 2018

\(A=-x^2+6x-10=-\left(x^2-6x+9\right)-1=-\left(x-3\right)^2-1\le-1\)

Vậy GTLN của A là -1 khi x = 3

\(B=-2x^2-4x-10=-2\left(x^2+2x+1\right)-8=-2\left(x+1\right)^2-8\le-8\)

Vậy GTLN của B là -8 khi x = -1

\(C=-2x^2+3x-10=-2\left(x^2-\frac{3}{2}x+\frac{9}{16}\right)-\frac{71}{8}=-2\left(x-\frac{3}{4}\right)^2-\frac{71}{8}\le-\frac{71}{8}\)

Vậy GTLN của C là \(-\frac{71}{8}\)khi x = \(\frac{3}{4}\)

\(D=-x^2-y^2+2x-4y-10\)

\(D=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)-5\)

\(D=-\left(x-1\right)^2-\left(y+2\right)^2-5\le-5\)

Vậy GTLN của D là -5 khi x = 1; y = -2

31 tháng 7 2016

M = -x2 +3x + 3x + 9 - 8

M = -x .( -x -3 ) - 3 .( -x -3 ) - 8

M =( -x -3 ) . ( -x -3 ) - 8

M = ( -x -3 ) 2 -8 

Vì ( -x -3 )>= 0  suy ra  ( -x -3 ) 2 -8  >= -8

=> - ( -x -3)  + 8 <= 8 

dấu " = xẩy ra <=> -x -3 =0 <=> x = -3 

31 tháng 7 2016

khi đó GTLN M = 8 khi x = -3