\(\frac{2x^2+4x+9}{x^2+2x+4},\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 6 2020

\(\frac{2x^2+4x+9}{x^2+2x+4}=\frac{6x^2+12x+27}{3\left(x^2+2x+4\right)}=\frac{7\left(x^2+2x+4\right)-x^2-2x-1}{3\left(x^2+2x+4\right)}=\frac{7}{3}-\frac{\left(x+1\right)^2}{3\left(x+1\right)^2+9}\le\frac{7}{3}\)

Dấu "=" xảy ra khi \(x=-1\)

NV
22 tháng 5 2019

\(A=\frac{6x^2+12x+27}{3\left(x^2+2x+4\right)}=\frac{7\left(x^2+2x+4\right)-x^2-2x-1}{3\left(x^2+2x+4\right)}=\frac{7}{3}-\frac{\left(x+1\right)^2}{3\left(x+1\right)^2+9}\le\frac{7}{3}\)

\(\Rightarrow A_{max}=\frac{7}{3}\) khi \(x+1=0\Leftrightarrow x=-1\)

\(B=\frac{x^2-x+1}{x^2+x+1}=\frac{3\left(x^2+x+1\right)-2x^2-4x-2}{x^2+x+1}=3-\frac{2\left(x+1\right)^2}{x^2+x+1}=3-\frac{2\left(x+1\right)^2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\le3\)

\(\Rightarrow B_{max}=3\) khi \(x+1=0\Rightarrow x=-1\)

\(C=\frac{2x^2-6x+3}{x^2-2x+1}=\frac{3\left(x^2-2x+1\right)+x^2}{x^2-2x+1}=3+\frac{x^2}{\left(x-1\right)^2}\ge3\)

\(C\) chỉ tồn tại min, ko tồn tại max

1 tháng 6 2019

\(1,\)\(\frac{x+2}{x+3}+\frac{x-1}{x+1}=\frac{2}{x^2+4x+3}+1\)

\(\Rightarrow\frac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x+3\right)}+\frac{\left(x-1\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}=\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{\left(x+1\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}\)

\(\Rightarrow\)\(x^2+3x+2+x^2-2x-3=2+x^2+4x+3\)

\(\Rightarrow x^2-3x-6=0\)

.....

1 tháng 6 2019

\(\frac{x+1}{x-2}+\frac{2x-1}{x-1}=\frac{2}{x^2-3x+2}+\frac{11}{2}\)

\(\Rightarrow\frac{2\left(x+1\right)\left(x-1\right)}{2\left(x-2\right)\left(x-1\right)}+\frac{2\left(2x-1\right)\left(x-2\right)}{2\left(x-1\right)\left(x-2\right)}\)\(=\frac{4}{2\left(x-1\right)\left(x-2\right)}+\frac{22\left(x-1\right)\left(x-2\right)}{2\left(x-1\right)\left(x-2\right)}\)

\(\Rightarrow2x^2-2+4x^2-10x+4=4+22x^2-66x+44\)

.....

18 tháng 8 2017

\(M=\frac{x^2+2x+3}{x^2+2}=\frac{2x^2+4-x^2+2x-1}{x^2+2}=\frac{2\left(x^2+2\right)-\left(x-1\right)^2}{x^2+2}=2-\frac{\left(x-1\right)^2}{x^2+2}\le2\)

\(N=\frac{4x}{x^2+2}=\frac{-\sqrt{2}x^2-2\sqrt{2}+\sqrt{2}x^2+4x+2\sqrt{2}}{x^2+2}\)

\(=\frac{-\sqrt{2}\left(x^2+2\right)+\sqrt{2}\left(x^2+2\sqrt{2}x+2\right)}{x^2+2}=-\sqrt{2}+\frac{\sqrt{2}\left(x+\sqrt{2}\right)^2}{x^2+2}\ge-\sqrt{2}\)

12 tháng 9 2019

a. 

\(A=\frac{x^2+x^2-2x+1}{x^2}=1+\frac{\left(x-1\right)^2}{x^2}\ge1\)

Giá trị nhỏ nhất của A là 1 khi và chỉ khi x-1=0 <=> x=1

b. \(B=\frac{2014x^2+4x^2-4x+1}{x^2}=2014+\frac{\left(2x-1\right)^2}{x^2}\ge2014\)

Giá trị nhỏ nhất của B là 2014 khi và chỉ khi 2x-1=0 <=> x=1/2