
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))

Ta có : Để M=\(\left(\frac{4}{x-4}-\frac{4}{x+4}\right)\left(\frac{x^2+8x+16}{32}\right)=0\)
<=> M=\(\left(\frac{4\left(x+4\right)-4\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)=0\)
<=>M=\(\left(\frac{4x+16-4x+16}{\left(x+4\right)\left(x-4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)\)
<=>M=\(\left(\frac{32}{\left(x-4\right)\left(x+4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)\)
<=>M=\(\frac{x+4}{x-4}\)
b) Thay x=\(\frac{-3}{8}\) vào M:
M=\(\frac{x+4}{x-4}=\frac{\frac{-3}{8}+4}{\frac{-3}{8}-4}=\frac{-29}{35}\)
c)Hình như sai!
d)

super easy . tập làm đi cho não có nếp nhăn Giang ơi :)
Mik làm bài 3 nha
Để \(\frac{2}{x^2-6x+17}\)đạt GTLN thì
\(x^2-6x+17\)đạt GTNN
Mà \(x^2-6x\ge0\)Do 6x mang dấu trừ
Suy ra \(x^2-6x+17\ge17\)
Suy ra \(x^2-6x+17\)đạt GTNN khi
\(x^2-6x+17=17\)
\(\Leftrightarrow x^2-6x=0\)
Dấu ''='' xảy ra khi:
\(\hept{\begin{cases}x=0\\x=6\end{cases}}\)
Vậy \(\frac{2}{x^2-6x+17}\)đạt GTLN tại \(\hept{\begin{cases}x=0\\x=6\end{cases}}\)
Câu cuôi tương tự

xet Max cua tu la 4 vi x2 >=0 => 4-x2<=4
xet Min cua mau la 1 vi x2>=0 => x2+1>=1
vay GTLN cua B= Max tu / Min mau= 4/1=4
dau = xay ra khi x=0
\(B=\frac{4-x^2}{x^2+1}=\frac{-\left(x^2+1\right)+5}{x^2+1}=-1+\frac{5}{x^2+1}=-1+\frac{5}{x^2+1}\)
\(B_{max}\Leftrightarrow\frac{5}{x^2+1}_{max}\Leftrightarrow\left(x^2+1\right)_{min}\Leftrightarrow x=0\)
Vậy ...

\(A=\frac{4-x^2}{x^2+1}=\frac{-\left(x^2+1\right)+5}{x^2+1}\)
\(=-1+\frac{5}{x^2+1}\)
Ta có \(x^2\ge0\forall x\)
\(\Rightarrow x^2+1\ge1\)
\(\Rightarrow\frac{5}{x^2+1}\le5\)
\(\Rightarrow-1+\frac{5}{x^2+1}\le4\)
Dấu "=" xảy ra khi x = 0

ĐK: \(x\ne-4\)
\(A=\frac{x}{\left(x+4\right)^2}=\frac{16x}{16\left(x^2+8x+16\right)}=\frac{x^2+8x+16-x^2+8x-16}{16\left(x^2+8x+16\right)}=\frac{1}{16}-\frac{\left(x-4\right)^2}{16\left(x+4\right)^2}\le\frac{1}{16}\forall x\)
Dấu "=" xảy ra khi: \(x-4=0\Rightarrow x=4\) (thỏa mãn ĐKXĐ)
Vậy \(A_{max}=\frac{1}{16}\Leftrightarrow x=4\)

Áp dụng bất đẳng thức Cauchy cho 3 số không âm x^4, x^2, 1
\(x^4+x^2+1\ge3\sqrt[3]{x^4\cdot x^2\cdot1}=3\sqrt[3]{x^6}=3x^2\)
\(C=\frac{x^2}{x^4+x^2+1}\le\frac{x^2}{3x^2}=\frac{1}{3}\)
Dấu "=" xảy ra <=> x^4 = x^2 = 1 <=> x=1 hoặc x= -1
Vậy GTLN C=1/3 khi x=1 hoặc x=-1

Vì x2 >= 0 với mọi x nên x2 - 4 >= -4 với mọi x.
=> \(\frac{-4}{x^2-4}\)=< 1 với mọi x.
Dấu = xra <=> x2 = 0 <=> x = 0.
nếu thay x=1; -1 thì biểu thức lớn nhất