Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|y-5\right|+\left|y+2012\right|\ge\left|y-5+2012+y\right|=2007\)
Dấu "=" khi \(-2012\le x\le5\)
Vậy MinA=2007 khi \(-2012\le x\le5\)
2)Ta thấy:\(\left|2x-3\right|\ge0\)
\(\Rightarrow-\left|2x-3\right|\le0\)
\(\Rightarrow-5-\left|2x-3\right|\le-5\)
Dấu "=" khi \(x=\frac{3}{2}\)
Vậy MaxN=-5 khi \(x=\frac{3}{2}\)
Ta có :
( 2x + 1 )2 \(\ge\)0
Dấu " = " xảy ra khi x = \(\frac{-1}{2}\)
\(\Rightarrow\)5 . ( 2x + 1 )2 \(\ge\)0
Dấu " = " xảy ra khi x = \(\frac{-1}{2}\)
\(\Rightarrow\)5 - 5 . ( 2x + 1 )2 \(\le\)5
Dấu " = " xảy ra khi x = \(\frac{-1}{2}\)
Suy ra GTLN của A = 5 khi x = \(\frac{-1}{2}\)
Ta có |2x - 1| >= 0
=> - |2x - 1| <= 0
=> 5 - |2x - 1| <= 5
Vậy GTLN của biểu thức là 5 khi x = 0,5
Ta có:
|2x-1| luôn lớn hơn hoặc bằng 0.
Mà 5 trừ đi 1 số dương sẽ giảm giá trị.
Từ đó suy ra để A đạt giá trị lớn nhất thì |2x-1|=0.
=>2x-1=0
=>x=1/2.
Vậy giá trị lớn nhất của A là 5 khi x=1/2.
Chúc bạn học tốt^^
\(B=x-\left|x\right|\)
Vì \(\left|x\right|\ge0\)
\(\Leftrightarrow B=x-\left|x\right|\le0\)
\(\Leftrightarrow0\)
Vậy GTLN của biểu thức B là 0
\(C=5-\left|2x-1\right|\)
Vì \(\left|2x-1\right|\ge0\)
\(\Leftrightarrow C=5-\left|2x-1\right|\le5\)
\(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của biểu thức C là 5
Ta có: -2x2+5
Vì 2x2>=0,mọi x thuộc R
=>-2x2<=0,mọi x thuộc R
=>-2x2+5<=5,mọi x thuộc R
Dấu '=' xảy ra <=> -2x2=0 <=> x=0
Vậy GTLN của -2x2+5 là 5 tại x=0.
Ta có: \(A=\frac{7x-8}{2x-3}=\frac{1}{2}.\frac{14x-16}{2x-3}=\frac{1}{2}.\frac{14x-21+5}{2x-3}=\frac{1}{2}.\frac{7\left(2x-3\right)+5}{2x-3}\)\(=\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\)
Để A đạt GTLN thì \(\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\) lớn nhất
\(\Rightarrow7+\frac{5}{2x-3}\) lớn nhất
\(\Rightarrow\frac{5}{2x-3}\) lớn nhất
\(\Rightarrow2x-3\) nhỏ nhất hay x nhỏ nhất và x > 0
Vì \(x\inℤ\) nên \(2x-3\inƯ\left(5\right)=\left\{1;5\right\}\)
\(\Rightarrow2x\in\left\{4;8\right\}\)
\(\Rightarrow x\in\left\{2;4\right\}\)
Mà x nhỏ nhất và x > 0 nên x = 2
Thay x = 2 vào A ta được: \(A=\frac{1}{2}.\left(7+\frac{5}{2.2-3}\right)=\frac{1}{2}.12=6\)
Vậy MaxA = 6 tại x = 2.
Bài này thì giải cho cả bài nek vì không dài cho lắm ^_^
Ta có |2x - 1| luôn lớn hơn oặc bằng 0 với mọi x
=> 5 - |2x - 1| luôn bé hơn hoặc bằng 5
=> N luôn bé hơn hoặc bằng 5
Dấu "=" xảy ra <=> |2x - 1| = 0
=> 2x - 1 = 0
2x = 0 + 1
2x = 1
x = 1 : 2
x = 0,5
Vậy Min N = 5 <=> x = 0,5
N = 5 - |2x - 1| \(\le\) 5
Vậy Max N = 5 , dấu "=" xảy ra khi 2x - 1 = 0 => 2x = 1 => x = 1/2