Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x^2+8xy+5y^2=36\)
\(\Rightarrow5\left(x+y\right)^2-2xy=36\)
\(\Rightarrow-2xy=36-5\left(x+y\right)^2\)
Ta lại có \(M=x^2+y^2=\left(x+y\right)^2-2xy=\left(x+y\right)^2+36-5\left(x+y\right)^2=36-4\left(x+y\right)^2\)
Mà \(-4\left(x+y\right)^2\Leftarrow0\)với mọi \(x;y\)nên \(M=36-4\left(x+y\right)^2\Leftarrow36\)
Dấu "=" xảy ra khi \(x=-y\)
Đề là tìm GTLN chứ nhỉ ?
Ta có : \(5x^2+8xy+5y^2=36\)
\(\Leftrightarrow x^2+y^2+4\left(x^2+2xy+y^2\right)=36\)
\(\Leftrightarrow M+4\left(x+y\right)^2=36\)
\(\Leftrightarrow M=36-4\left(x+y\right)^2\le36\)
Dấu ''=" khi x = -y
Thế vào pt ban đầu sẽ tìm đc giá trị cụ thể của x ; y
\(B=\frac{ab}{a+b+2}\Rightarrow2B=\frac{2ab}{a+b+2}=\frac{\left(a+b\right)^2-a^2-b^2}{a+b+2}=\frac{\left(a+b\right)^2-4}{a+b+2}=a+b-2\)
Do a ; b không âm , áp dụng BĐT Cô - si cho 2 số , ta có :
\(a+b\le\sqrt{2\left(a^2+b^2\right)}=\sqrt{2.4}=\sqrt{8}\)
\(\Rightarrow a+b-2\le\sqrt{8}-2\)
\(\Rightarrow2B\le\sqrt{8}-2\Rightarrow B\le\sqrt{2}-1\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=\sqrt{2}\)
Do x ; y không âm , \(x^2+y^2=1\)
\(\Rightarrow\left|x\right|;\left|y\right|\le1\) \(\Rightarrow0\le x;y\le1\)
\(\Rightarrow x\ge x^2;y\ge y^2\Rightarrow x+y\ge x^2+y^2=1\)
\(x,y\ge0\Rightarrow xy\ge0\)
Ta có : \(A=\sqrt{5x+4}+\sqrt{5y+4}\)
\(\Rightarrow A^2=5x+4+5y+4+2\sqrt{\left(5x+4\right)\left(5y+4\right)}\)
\(=5\left(x+y\right)+8+2\sqrt{25xy+20y+20x+16}\)
\(\ge5.1+8+2\sqrt{25.0+20.1+16}=13+2.6=25\)
\(\Rightarrow A\ge5\)
Dấu " = " xảy ra \(\Leftrightarrow\left[{}\begin{matrix}x=0;y=1\\x=1;y=0\end{matrix}\right.\)
Mình nghĩ là làm như này nè:
Dễ cm:
+: \(\left(a+b\right)^2\le\)\(2\left(a^2+b^2\right)\)(với mọi a, b) ... Áp dụng => \(\left(x+y\right)^2\le\)\(2\)<=> \(-\sqrt{2}\le x+y\)\(\le\sqrt{2}\)
+: \(\sqrt{a+b}\le\)\(\sqrt{a}+\sqrt{b}\)\(\le\sqrt{2\left(a+b\right)}\)(Cái đầu dùng tương đương còn cái hai dùng bđt BCS)
ÁP dụng =>\(\sqrt{8-5\sqrt{2}}\le\) \(\sqrt{8+5\left(x+y\right)}\le\)\(T\)\(\le\sqrt{16+10\left(x+y\right)}\)\(\le\sqrt{16+10\sqrt{2}}\)
Dấu "=" <=> ...
Bạn @Đậu Đậu gì đó ơi, Bạn giải tới đó thì max=\(16+10\sqrt{2}\)thì mình hiểu rồi , còn min =??? ghi rõ hộ mình nhé
Quan trọng là dự đoán:D
Dự đoán Max =70 khi (x;y) =(-8;0)
Ta có: \(70-P=\frac{6\left(x+y+8\right)^2+17y^2}{11}\ge0\)
Hoặc một phân tích khác:\(70-P=\frac{\left(6x+23y+48\right)^2+102\left(x+8\right)^2}{253}\ge0\)
\(\left(x+3y\right)^2\le\left(1+3^2\right)\left(x^2+y^2\right)=10\left(x^2+y^2\right)\)
\(\Rightarrow5\left(x^2+y^2\right)\ge\frac{1}{2}\left(x+3y\right)^2\)
\(\Rightarrow\frac{1}{2}\left(x+3y\right)^2-5\left(x+3y\right)+8\le0\)
\(\Leftrightarrow\left(x+3y\right)^2-10\left(x+3y\right)+16\le0\)
\(\Rightarrow2\le x+3y\le8\)
\(\Rightarrow3\le x+3y+1\le9\)