Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+2ab+b^2=\left(a+b\right)^2\ge0\forall a,b\)
\(a^2-2ab+b^2=\left(a-b\right)^2\ge0\forall a,b\)
\(A^{2n}\ge0\forall A\)
\(-A^{2n}\le0\forall A\)
\(\left|A\right|\ge0\forall A\)
\(-\left|A\right|\le0\forall A\)
\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
\(\left|A\right|-\left|B\right|\le\left|A-B\right|\)
c)C=\(\dfrac{x^2+8}{x^2+2}=\dfrac{\left(x^2+2\right)+6}{x^2+2}=1+\dfrac{6}{x^2+2}\)
Để C đạt GTLN thì \(\dfrac{6}{x^2+2}\) đạt GTNN
\(x^2\ge0\Rightarrow x^2+2\ge2\)
Max C=4 khi x=0
a)A= 5-3.\(\left(2x-1\right)^2\)
\(\left(2x-1\right)^2\)\(\ge0\) nên 3.\(\left(2x-1\right)^2\)\(\ge0\)
Max A=5 khi x=\(\dfrac{1}{2}\)
b) Để B=\(\dfrac{1}{2.\left(x-1\right)^2+3}\)đạt GTLN thì \(2.\left(x-1\right)^2+3\) đạt GTNN
\(\left(x-1\right)^2\ge0\Rightarrow2.\left(x-1\right)^2\ge0\Rightarrow2.\left(x-1\right)^2+3\ge3\)
Max B=\(\dfrac{1}{3}\)khi x=1
câu c thiếu đề phải ko bạn
Câu 2:
a: \(\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(-1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b+c=0\\a-b+c=0\end{matrix}\right.\Leftrightarrow a+c=0\)
=>a và c đối nhau
b: \(P=\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2007\ge4+2007=2011\)
Dấu '=' xảy ra khi x=3 và y=-3
a/ Với mọi x ta có :
\(\left|x-2\right|\ge0\)
\(\Leftrightarrow-\left|x-2\right|\le0\)
\(\Leftrightarrow10-\left|x-2\right|\le10\)
\(\Leftrightarrow A\le10\)
Dấu "=" xảy ra \(\Leftrightarrow x=2\)
Vậy....
b/ Với mọi x ta có :
\(-3x^2\le0\)
\(\Leftrightarrow-3x^2+2014\le2014\)
\(\Leftrightarrow B\le2014\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy....
c/ Với mọi x ta có :
\(x^2\ge0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+5\ge5\\x^2+1\ge1\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{x^2+5}{x^2+1}\le5\)
\(\Leftrightarrow C\le5\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy...
d/ Với mọi x ta có :
\(\left|x-2\right|\ge0\)
\(\Leftrightarrow\left|x-2\right|+3\ge3\)
\(\Leftrightarrow\dfrac{1}{\left|x-2\right|+3}\le\dfrac{1}{3}\)
\(\Leftrightarrow D\le\dfrac{1}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=2\)
Vậy...
a: |x-1|+3>=3
=>B<=1/3
Dấu = xảy ra khi x=1
b: -(x-2/3)^4<=0
=>C<=1/2
Dấu = xảy ra khi x=2/3
\(\dfrac{4}{x}-\dfrac{y}{3}=\dfrac{1}{6}\)
\(\Rightarrow\dfrac{4}{x}-\dfrac{2y}{6}=\dfrac{1}{6}\)
\(\Rightarrow\dfrac{4}{x}=\dfrac{1}{6}+\dfrac{2y}{6}\)
\(\Rightarrow\dfrac{4}{x}=\dfrac{1+2y}{6}\)
\(\Rightarrow24=x\left(1+2y\right)\)
\(\Rightarrow x;1+2y\inƯ\left(24\right)\)
\(Ư\left(24\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm8;\pm12;\pm24\right\}\)
Mà 1+2y lẻ nên:
\(\left\{{}\begin{matrix}1+2y=1\Rightarrow2y=0\Rightarrow y=0\\x=24\\1+2y=-1\Rightarrow2y=-2\Rightarrow y=-1\\x=-24\end{matrix}\right.\)
\(\left\{{}\begin{matrix}1+2y=3\Rightarrow2y=2\Rightarrow y=1\\x=8\\1+2y=-3\Rightarrow2y=-4\Rightarrow y=-2\\x=-8\end{matrix}\right.\)
Lời giải:
$C=\frac{5-x^2}{x^2+3}=\frac{8-(3+x^2)}{x^2+3}=\frac{8}{x^2+3}-1$
Ta thấy: $x^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $x^2+3\geq 3$
$\Rightarrow \frac{8}{x^2+3}\leq \frac{8}{3}$
$\Rightarrow C=\frac{8}{x^2+3}-1\leq \frac{8}{3}-1=\frac{5}{3}$
Vậy $C_{\max}=\frac{5}{3}$ tại $x=0$