Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ ĐKXĐ: \(x\ne\pm5\)
\(\Leftrightarrow\left(x+5\right)^2-\left(x-5\right)^2=20\)
\(\Leftrightarrow\left(x^2+10x+25\right)-\left(x^2-10x+25\right)=20\)
\(\Leftrightarrow20x=20\Rightarrow x=1\)
b/ ĐKXĐ: \(x\ne\pm4\)
\(\Leftrightarrow2x\left(x-4\right)-4x=0\)
\(\Leftrightarrow2x^2-12x=0\)
\(\Leftrightarrow2x\left(x-6\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
c/ ĐKXĐ: \(x\ne\pm\frac{2}{3}\)
\(\Leftrightarrow\left(3x+2\right)^2-6\left(3x-2\right)=9x^2\)
\(\Leftrightarrow9x^2+12x+4-18x+12=9x^2\)
\(\Leftrightarrow6x=16\Rightarrow x=\frac{8}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
\(f\left(x\right)=\frac{x-7}{\left(x-4\right)\left(4x-3\right)}\)
Vậy:
\(f\left(x\right)\) ko xác định tại \(x=\left\{\frac{3}{4};4\right\}\)
\(f\left(x\right)=0\Rightarrow x=7\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}\frac{3}{4}< x< 4\\x>7\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< \frac{3}{4}\\4< x< 7\end{matrix}\right.\)
2.
\(f\left(x\right)=\frac{11x+3}{-\left(x-\frac{5}{2}\right)^2-\frac{3}{4}}\)
Vậy:
\(f\left(x\right)=0\Rightarrow x=-\frac{3}{11}\)
\(f\left(x\right)>0\Rightarrow x< -\frac{3}{11}\)
\(f\left(x\right)< 0\Rightarrow x>-\frac{3}{11}\)
3.
\(f\left(x\right)=\frac{3x-2}{\left(x-1\right)\left(x^2-2x-2\right)}\)
Vậy:
\(f\left(x\right)\) ko xác định khi \(x=\left\{1;1\pm\sqrt{3}\right\}\)
\(f\left(x\right)=0\Rightarrow x=\frac{2}{3}\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< 1-\sqrt{3}\\\frac{2}{3}< x< 1\\x>1+\sqrt{3}\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}1-\sqrt{3}< x< \frac{2}{3}\\1< x< 1+\sqrt{3}\end{matrix}\right.\)
4.
\(f\left(x\right)=\frac{\left(x-2\right)\left(x+6\right)}{\sqrt{6}\left(x+\frac{\sqrt{6}}{4}\right)^2+\frac{8\sqrt{2}-3\sqrt{6}}{8}}\)
Vậy:
\(f\left(x\right)=0\Rightarrow x=\left\{-6;2\right\}\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< -6\\x>2\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow-6< x< 2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ: \(\left[{}\begin{matrix}x\ge5\\x< -5\end{matrix}\right.\)
- Với \(x\ge5\)
\(\Leftrightarrow\sqrt{x-5}\left(\frac{2x-1}{\sqrt{x+5}}-3\sqrt{x+5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\2x-1=3\left(x+5\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-16\left(l\right)\end{matrix}\right.\)
- Với \(x< -5\)
\(\Leftrightarrow\sqrt{5-x}\left(\frac{2x-1}{\sqrt{-x-5}}-3\sqrt{-x-5}\right)=0\)
\(\Leftrightarrow2x-1=3\left(-x-5\right)\)
\(\Leftrightarrow5x=-14\Rightarrow x=-\frac{14}{5}>-5\left(l\right)\)
Vậy pt có nghiệm duy nhất \(x=5\)
b/ Với \(x< 1\) pt vô nghiệm
Với \(x\ge1\)
\(\Leftrightarrow\left(3x-1\right)\left(3x^2-4x+1\right)=\left(x-1\right)^2\)
\(\Leftrightarrow\left(3x-1\right)^2\left(x-1\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(\left(3x-1\right)^2-x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\left(3x-1\right)^2-x+1=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow9x^2-7x+2=0\) (vô nghiệm)
Vậy pt có nghiệm duy nhất \(x=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(y=\frac{1}{2}\left(2x+6\right)\left(5-2x\right)\le\frac{1}{8}\left(2x+6+5-2x\right)^2=\frac{121}{8}\)
Dấu "=" xảy ra khi \(2x+6=5-2x\Leftrightarrow x=-\frac{1}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{2sinx.cosx+sinx}{1+2cos^2x-1+cosx}=\frac{sinx\left(2cosx+1\right)}{cosx\left(2cosx+1\right)}=\frac{sinx}{cosx}=tanx\)
\(B=\frac{cosa}{sina}\left(\frac{1+sin^2a}{cosa}-cosa\right)=\frac{cosa}{sina}\left(\frac{1+sin^2a-cos^2a}{cosa}\right)=\frac{cosa}{sina}.\frac{2sin^2a}{cosa}=2sina\)
\(C=\frac{1+cos2x+cosx+cos3x}{2cos^2x-1+cosx}=\frac{1+2cos^2x-1+2cos2x.cosx}{cos2x+cosx}=\frac{2cosx\left(cosx+cos2x\right)}{cos2x+cosx}=2cosx\)
\(D=\frac{2sinx.cosx.\left(-tanx\right)}{-tanx.sinx}-2cosx=2cosx-2cosx=0\)
\(E=cos^2x.cot^2x-cot^2x+cos^2x+2cos^2x+2sin^2x\)
\(E=cot^2x\left(cos^2x-1\right)+cos^2x+2=\frac{cos^2x}{sin^2x}\left(-sin^2x\right)+cos^2x+2=2\)
\(F=\frac{sin^2x\left(1+tan^2x\right)}{cos^2x\left(1+tan^2x\right)}=\frac{sin^2x}{cos^2x}=tan^2x\)
Câu G mẫu số có gì đó sai sai, sao lại là \(2sina-sina?\)
\(H=sin^4\left(\frac{\pi}{2}+a\right)-cos^4\left(\frac{3\pi}{2}-a\right)+1=cos^4a-sin^4a+1\)
\(=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)+1=cos^2a-\left(1-cos^2a\right)+1=2cos^2a\)