Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
1) ta có : \(x^2+5y^2-4xy+2y=3\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=2\)
\(\Leftrightarrow\left(x-2y\right)^2=2-\left(y+1\right)^2\ge0\) \(\Leftrightarrow2\ge\left(y+1\right)^2\Leftrightarrow-\sqrt{2}\le y+1\le\sqrt{2}\)
\(\Leftrightarrow-\sqrt{2}-1\le y\le\sqrt{2}-1\)
ta lại có : \(\left(y+1\right)^2=2-\left(x-2y\right)^2\ge0\)
\(\Leftrightarrow2\ge\left(x-2y\right)^2\Leftrightarrow-\sqrt{2}\le x-2y\le\sqrt{2}\)
\(\Leftrightarrow-\sqrt{2}+2y\le x\le\sqrt{2}+2y\Leftrightarrow-2-3\sqrt{2}\le x\le-2+3\sqrt{2}\)
vậy \(x_{max}=-2+3\sqrt{2}\)
dâu "=" xảy ra khi \(y=\sqrt{2}-1\)
câu 3 : ta có : \(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Leftrightarrow y^2=-\left(x+y\right)^2-7\left(x+y\right)-10\ge0\)
\(\Leftrightarrow-5\le x+y\le-2\)
\(\Rightarrow S_{max}=-2\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-2\end{matrix}\right.\Leftrightarrow y=0;x=-2\)
\(S_{min}=-5\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-5\end{matrix}\right.\Leftrightarrow y=0;x=-5\)
bài này có trong đề thi hsg trường mk :)
\(C=2\left(x-\frac{5}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\Rightarrow C_{min}=\frac{7}{8}\)
\(D=\left(x^2+4xy+4y^2\right)+\left(y^2+y+\frac{1}{4}\right)+\frac{8083}{4}\)
\(D=\left(x+2y\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{8083}{4}\ge\frac{8083}{4}\)
\(E=\frac{1}{2}\left(4x^2+y^2+\frac{9}{4}-4xy-6x+3y\right)+\frac{1}{2}\left(y^2+y+\frac{1}{4}\right)+\frac{15}{4}\)
\(E=\frac{1}{2}\left(2x-y-\frac{3}{2}\right)^2+\frac{1}{2}\left(y+\frac{1}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}\)
\(A=-\left(x-2\right)^2+11\le11\)
\(B=-\left(x+\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)
\(C=-\left(x-3y\right)^2-\left(y-2\right)^2+11\le11\)
1) \(C=-\left(x^2-6x+9\right)+5\)
\(\Leftrightarrow C=-\left(x-3\right)^2+5.\)
Vậy GTLN của C là 5 <=> x=3
3) \(E=-\left(x^2+4x+4\right)-\left(y^2-2y+1\right)+5\)
\(E=-\left(x+2\right)^2-\left(y-1\right)^2+5\)
Vậy GTNN của E bằng 5 <=> x=-2 và y=1
Dương: Câu c là GTLN em nhé :)
b. Ta chia ra thành các trường hợp:
- Với \(x\ge3,D=\left(x-3\right)\left(2-x+3\right)=\left(x-3\right)\left(5-x\right)=-x^2+8x-15=1-\left(x-4\right)^2\le1\)
- Với \(x< 3,D=\left(3-x\right)\left(2-3+x\right)=\left(3-x\right)\left(x-1\right)=-x^2+4x-3=1-\left(x-2\right)^2\le1\)
Vậy GTLN của D = 1 khi x = 4 hoặc x = 2.
Chúc em học tốt :))
3)
e)
b) Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3
= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1
= (x-3y)2 + (2x -1)2 + (y-1)2 +1
Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0
(2x -1)2 luôn lớn hơn hoặc bằng 0
(y-1)2 luôn lớn hơn hoặc bằng 0
=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0
=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0
\(M=x^2-8x+5\)
\(\Leftrightarrow M=x^2-8x+16-11\)
\(\Leftrightarrow M=\left(x-4\right)^2-11\ge-11\)
Min M = -11
\(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x=4\)
\(N=-3x-6x-9\)
\(\Leftrightarrow N=-9x-9\le-9\)
Max N = -9
\(\Leftrightarrow x=0\)
A = 5 + 2xy + 14y - x^2 - 5y^2 - 2x
= -(x^2 + y^2 + 1 - 2xy + 2x - 2y) - (4y^2 - 12y + 9) + 5 + 1 + 9
= -(x-y+1)^2 - (2y-3)^2 + 15 ≤ 15
Dấu "=" xảy ra <=> x-y+1 = 0
2y-3 = 0
<=> x = y-1
y = 3/2
<=> x = 3/2 - 1 = 1/2