\(A=x^2-20x+101\)\

tìm GTNN của biểu thức

a) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2019

\(A=x^2-20x+101\)

\(=x^2-20x+100+1\)

\(=\left(x-10\right)^2+1\)

\(\Rightarrow A_{min}=1\Leftrightarrow\left(x-10\right)^2=0\)

\(\Rightarrow x-10=0\)

\(\Rightarrow x=10\)

14 tháng 6 2019

#)Giải :

\(A=x^2-20x+101\)

\(A=x^2+2.10.x+10^2+1\)

\(A=\left(x+10\right)^2+1\ge1\)

Dấu ''='' xảy ra khi x = -10

=> Vậy GTNN của A = 1 đạt được khi x = -10

15 tháng 8 2020

BÀI 1:

\(A=\left(x-10\right)^2+103\)

Có:    \(\left(x-10\right)^2\ge0\forall x\)

=>   \(A\ge103\)

DẤU "=" XẢY RA <=>   \(\left(x-10\right)^2=0\Rightarrow x=10\)

\(B=\left(2x+1\right)^2-6\)

Có:   \(\left(2x+1\right)^2\ge0\forall x\)

=>   \(B\ge-6\)

DẤU "=" XẢY RA <=>   \(\left(2x+1\right)^2=0\Leftrightarrow x=-\frac{1}{2}\)

BÀI 3:

a) \(A=y^4+y^3-y^2-2y-\left(y^4+y^3+y^2-2y^2-2y-2\right)\)

\(A=y^4+y^3-y^2-2y-y^4-y^3+y^2+2y+2\)

\(A=2\)

b)   \(B=\left(2x\right)^3+3^3-8x^3+2\)

\(B=29\)

15 tháng 8 2020

Bài 1.

A = x2 - 20x + 103

A = ( x2 - 20x + 100 ) + 3

A = ( x - 10 )2 + 3 ≥ 3 ∀ x

Đẳng thức xảy ra <=> x - 10 = 0 => x = 10

=> MinA = 3 <=> x = 10

B = 4x2 + 4x - 5

B = ( 4x2 + 4x + 1 ) - 6

B = ( 2x + 1 )2 - 6 ≥ -6 ∀ x

Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2

=> MinB = -6 <=> x = -1/2

Bài 2.

A = -x2 + 8x - 21

A = -x2 + 8x - 16 - 5

A = -( x2 - 8x + 16 ) - 5

A = -( x - 4 )2 - 5 ≤ -5 ∀ x

Đẳng thức xảy ra <=> x - 4 = 0 => x = 4

=> MaxA = -5 <=> x = 4

B = lỗi đề :>

Bài 3.

a) y( y3 + y2 - y - 2 ) - ( y2 - 2 )( y2 + y + 1 )

= y4 + y3 - y2 - 2y - ( y4 + y3 + y2 - 2y2 - 2y - 2 )

= y4 + y3 - y2 - 2y - y4 - y3 - y2 + 2y2 + 2y + 2

= 2 ( đpcm )

b) ( 2x + 3 )( 4x2 - 6x + 9 ) - 2( 4x3 - 1 )

= ( 2x )3 + 27 - 8x3 + 2

= 8x3 + 27 - 8x3 + 2

= 29 ( đpcm )

1 tháng 10 2017

max A= -201 tại x=10(câu này dễ)

B= (x-2y+5)^2+(y-1)^2+2 suy ra max B=2 tại y=1 => x = -3. ^_^

25 tháng 8 2016

1/ \(A=4x^2-12x+15=\left(2x\right)^2-2.3.2x+3^2+6=\left(2x-3\right)^2+6\ge6\)

Đẳng thức xảy ra khi: \(2x-3=0\Rightarrow2x=3\Rightarrow x=3:2\Rightarrow x=1,5\)

Vậy giá trị nhỏ nhất của A là 6 khi x = 1,5

2a/ \(B=-x^2+4x+4=-\left(x^2-4x-4\right)=-\left(x^2-2.2x+2^2-8\right)=-\left[\left(x-2\right)^2-8\right]\)

\(\Rightarrow B=-\left(x-2\right)^2+8\le8\)

Đẳng thức xảy ra khi: \(x-2=0\Rightarrow x=2\)

Vậy giá trị lớn nhất của B là 8 khi x = 2

2b/ \(C=4-16x^2-8x=-16x^2-8x+4=-\left(16x^2+8x-4\right)=-\left[\left(4x\right)^2+2.4x+1-5\right]\)

\(\Rightarrow C=-\left[\left(4x+1\right)^2-5\right]=-\left(4x+1\right)^2+5\le5\)

Đẳng thức xảy ra khi: 4x + 1 = 0  => x = -0,25

Vậy giá trị lớn nhất của C là 5 khi x = -0,25

17 tháng 9 2019

ghi đề hẳn hoi coi

16 tháng 8 2016

a ) \(A=x^2-4x-7\)

     \(A=\left(x^2+2.x.2+2^2\right)-11\)

     \(A=\left(x+2\right)^2-11\)

Ta có : \(\left(x+2\right)^2\ge0\)

  \(\Rightarrow\left(x+2\right)^2-11\ge-11\)

Vậy GTNN của \(A=-11\)

Khi : \(x+2=0\)

         \(x=-2\)

b ) \(B=-x^2+4x-7\)

     \(B=-\left(x^2+2.x.2-2^2\right)-3\)

     \(B=-\left(x-2\right)^2-3\)

Ta có : \(-\left(x-2\right)^2\le0\)

\(\Rightarrow-\left(x-2\right)^2-3\le-3\)

Vậy GTLN của \(B=-3\)

Khi \(x-2=0\)

          \(x=2\)

16 tháng 8 2016

a)

\(A=\left(x^2-4x+4\right)-11\)

\(=\left(x-2\right)^2-11\)

Ta có

\(\left(x-2\right)^2-11\ge-11\)

Dấu " = " xảy ra khi x = 2

Vậy MINA= - 11 khi x=2

b) 

\(B=-\left(x^2-4x+4\right)-3\)

\(B=-\left(x-2\right)^2-3\)

Ta có

\(-\left(x-2\right)^2-3\le-3\) với mọi x

Dấu " = " xảy ra khi = 2

Vậy MAXB= - 3 khi x = 2

18 tháng 9 2020

a) \(A=x^2-2x+5\)

\(=\left(x^2-2x+1\right)+4\)

\(=\left(x-1\right)^2+4\)

Vì \(\left(x-1\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x-1\right)^2+4\ge0;\forall x\)

b) a sẽ làm tắt 1 vài bước nhé khi nào kiểm tra thì em làm theo mẫu a là được 

\(B=4x^2+4x+11\)

\(=4\left(x^2+x+\frac{11}{4}\right)\)

\(=4\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{11}{4}\right)\)

\(=4\left[\left(x+\frac{1}{2}\right)^2+\frac{10}{4}\right]\)

\(=4\left(x+\frac{1}{2}\right)^2+10\ge10;\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(B_{min}=10\Leftrightarrow x=\frac{-1}{2}\)

c) Tìm GTLN nhé 

 \(C=5-8x-x^2\)

\(=-x^2-2.x.4-16+16+5\)

\(=-\left(x+4\right)^2+21\)

Vì \(-\left(x+4\right)^2\le0;\forall x\)

\(\Rightarrow-\left(x+4\right)^2+21\le21;\forall x\)

Dấu "="xảy ra\(\Leftrightarrow\left(x+4\right)^2=0\)

                     \(\Leftrightarrow x=-4\)

Vậy\(C_{max}=21\Leftrightarrow x=-4\)

18 tháng 9 2020

A = x2 - 2x + 5

= ( x2 - 2x + 1 ) + 4

= ( x - 1 )2 + 4 ≥ 4 > 0 ∀ x ( đpcm )

B = 4x2 + 4x + 11

= ( 4x2 + 4x + 1 ) + 10

= ( 2x + 1 )2 + 10 ≥ 10 ∀ x

Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2

=> MinB = 10 <=> x = -1/2

C = 5 - 8x - x2

= -( x2 + 8x + 16 ) + 21

= -( x + 4 )2 + 21 ≤ 21 ∀ x

Đẳng thức xảy ra <=> x + 4 = 0 => x = -4

=> MaxC = 21 <=> x = -4

7 tháng 10 2019

a) \(x^2+6x-3\)

\(=x^2+6x+9-12\)

\(=\left(x+3\right)^2-12\ge-12\)

Vậy GTNN của bt là -12\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

7 tháng 10 2019

b) \(-x^2+4x+3\)

\(=-\left(x^2-4x-3\right)\)

\(=-\left(x^2-4x+4-7\right)\)

\(=-\left[\left(x-2\right)^2-7\right]\)

\(=-\left(x-2\right)^2+7\le7\)

Vậy GTLN của bt là 7\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

11 tháng 6 2017

a. x2 - 3x + 5

= x2 - 2.x.3/2 + 9/4 + 5 - 9/4

= (x - 3/2)2 + 11/4 \(\ge\)11/4

Vậy GTNN của biểu thức là 11/4 <=> x - 3/2 = 0 <=> x = 3/2

b. 4x2 + 4x + 2

= (2x)2 + 2.2x.1 + 1 + 1

= (2x + 1)2 + 1 \(\ge\)1

Vậy GTNN của biểu thức là 1 <=> 2x + 1 = 0 <=> x = -1/2

c. x2 - 20x + 101

= x2 - 2.x.10 + 100 + 1

= (x - 10)2 + 1 \(\ge\)1

Vậy GTNN của biểu thức là 1 <=> x - 10 = 0 <=> x = 10.