Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)(với mọi x,y)
=>\(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge-10\)
Dấu "=" xảy ra khi x=-2;y=1/5
Vậy GTNN của C là -10 tại x=-2;y=1/5
b)Ta có: \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+5\ge0\Rightarrow D=\frac{4}{\left(2x-3\right)^2+5}\le\frac{4}{5}\)
Dấu "=" xảy ra khi: x=3/2
Vậy GTLN của D là : 4/5 tại x=3/2
1. a) Ta có: M = |x + 15/19| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19
Vậy MinM = 0 <=> x = -15/19
b) Ta có: N = |x - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7
Vậy MinN = -1/2 <=> x = 4/7
2a) Ta có: P = -|5/3 - x| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3
Vậy MaxP = 0 <=> x = 5/3
b) Ta có: Q = 9 - |x - 1/10| \(\le\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10
Vậy MaxQ = 9 <=> x = 1/10
Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath
eM THAM khảo nhé!
\(\left(x^2-1\right)^2+9\ge9\)
nên \(A=\dfrac{4}{\left(x^2-1\right)^2+9}\le\dfrac{4}{9}\)
Dấu '=' xảy ra khi \(\left(x^2-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
=>x=1 hoặc x=-1
\(\left(x^2-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x^2-1\right)^2+9\ge0\forall x\)
Để A có GTLN thì (x2-1)2+9 phải nhỏ nhất
=>(x2-1)2+9=9
=>x=0
\(\Rightarrow A=\frac{4}{\left(0^2-1\right)^2+}=\frac{4}{10}=0,4\)
giá trị lớn nhất của biểu thức là: 0.4