Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(A=4x^2-12x+15=\left(2x\right)^2-2.3.2x+3^2+6=\left(2x-3\right)^2+6\ge6\)
Đẳng thức xảy ra khi: \(2x-3=0\Rightarrow2x=3\Rightarrow x=3:2\Rightarrow x=1,5\)
Vậy giá trị nhỏ nhất của A là 6 khi x = 1,5
2a/ \(B=-x^2+4x+4=-\left(x^2-4x-4\right)=-\left(x^2-2.2x+2^2-8\right)=-\left[\left(x-2\right)^2-8\right]\)
\(\Rightarrow B=-\left(x-2\right)^2+8\le8\)
Đẳng thức xảy ra khi: \(x-2=0\Rightarrow x=2\)
Vậy giá trị lớn nhất của B là 8 khi x = 2
2b/ \(C=4-16x^2-8x=-16x^2-8x+4=-\left(16x^2+8x-4\right)=-\left[\left(4x\right)^2+2.4x+1-5\right]\)
\(\Rightarrow C=-\left[\left(4x+1\right)^2-5\right]=-\left(4x+1\right)^2+5\le5\)
Đẳng thức xảy ra khi: 4x + 1 = 0 => x = -0,25
Vậy giá trị lớn nhất của C là 5 khi x = -0,25
a)\(2x^2-4x+7=2x^2-4x+2+5=2\left(x^2-2x+1\right)+5=2\left(x-1\right)^2+5\ge5\)
Dấu "=" xảy ra khi x=1
b)\(9x^2-6x+5=\left(3x\right)^2-2.3x.1+1+4=\left(3x-1\right)^2+4\ge5\)
Dấu "=" xảy ra khi x=1/3
c)\(3x^2-5x+2=3\left(x^2-\frac{5}{3}x+\frac{2}{3}\right)=3\left(x^2-2.\frac{5}{6}.x+\frac{25}{36}-\frac{1}{36}\right)\)
\(=3\left[\left(x-\frac{5}{6}\right)^2-\frac{1}{36}\right]=3\left(x-\frac{5}{6}\right)^2-\frac{1}{12}\ge-\frac{1}{12}\)
Dấu "=" xảy ra khi x=5/6
mấy câu sau tương tự
a: \(=\dfrac{2x^2-16x+44+6}{x^2-8x+22}=2+\dfrac{6}{x^2-8x+22}\)
\(=2+\dfrac{6}{\left(x-4\right)^2+6}\)
(x-4)^2+6>=6
=>6/(x-4)^2+6<=1
=>A<=3
Dấu = xảy ra khi x=4
b: \(B=\dfrac{5x^2+4x-1}{x^2}=\dfrac{9x^2-\left(4x^2-4x+1\right)}{x^2}=9-\dfrac{\left(2x-1\right)^2}{x^2}< =9\)
Dấu = xảy ra khi x=1/2
Bài làm:
+ \(C=10\left(x^2-2\right)+5=10x^2-20+5=10x^2-15\ge-15\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(10x^2=0\Rightarrow x=0\)
Vậy \(Min\left(C\right)=-15\Leftrightarrow x=0\)
+ \(D=\left(7-x\right)\left(2x+1\right)=-2x^2+13x+7=-2\left(x^2-\frac{13}{2}x+\frac{169}{16}\right)-\frac{225}{8}\)
\(=-2\left(x-\frac{13}{4}\right)^2-\frac{225}{8}\le-\frac{225}{8}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(-2\left(x-\frac{13}{4}\right)^2=0\Rightarrow x=\frac{13}{4}\)
Vậy \(Max\left(D\right)=-\frac{225}{8}\Leftrightarrow x=\frac{13}{4}\)
+ \(H=x^2+y^2+2x-4y+10=\left(x^2+2x+1\right)+\left(y^2-4y+4\right)+5\)
\(=\left(x+1\right)^2+\left(y-2\right)^2+5\ge5\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
Vậy \(Min\left(H\right)=5\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
+ \(E=-x^2-4x+6y-y^2-2021=-\left(x^2+4x+4\right)-\left(y^2-6y+9\right)-2008\)
\(=-\left(x+2\right)^2-\left(y-3\right)^2-2008\le-2008\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}-\left(x+2\right)^2=0\\-\left(y-3\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-2\\y=3\end{cases}}\)
Vậy \(Max\left(E\right)=-2008\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}\)
Học tốt!!!!
\(A=x^2-20x+101\)
\(=x^2-20x+100+1\)
\(=\left(x-10\right)^2+1\)
\(\Rightarrow A_{min}=1\Leftrightarrow\left(x-10\right)^2=0\)
\(\Rightarrow x-10=0\)
\(\Rightarrow x=10\)
a) \(A=9x^2-30x+30\)
\(A=\left(3x\right)^2-2\cdot3x\cdot5+5^2+5\)
\(A=\left(3x-5\right)^2+5\ge5\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{3}\)
b) \(B=16x^2-24x-3\)
\(B=\left(4x\right)^2-2\cdot4x\cdot3+3^2-13\)
\(B=\left(4x-3\right)^2-13\ge-13\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{3}{4}\)
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
Bài 1:
a) \(x^2+10x+26+y^2+2y\)
\(=\left(x^2+10x+25\right)+\left(y^2+2y+1\right)\)
\(=\left(x+5\right)^2+\left(y+1\right)^2\)
b) \(4x^2-y^2-12x+2y+8\)
\(=4x^2-12x+9-y^2+2y-1\)
\(=\left(4x^2-12x+9\right)-\left(y^2-2y+1\right)\)
\(=\left(2x-3\right)^2-\left(y-1\right)^2\)
Bài 2:
\(P=4+8x-16x^2\)
\(P=-\left(16x^2-8x+4\right)\)
\(P=-\left[\left(4x\right)^2-2.4x+1+3\right]\)
\(P=-\left(4x-1\right)^2-3\)
Vì \(-\left(4x-1\right)^2\le0\) với mọi x
\(\Rightarrow-\left(4x-1\right)^2-3\le-3\) với mọi x
\(\Rightarrow Pmax=-3\Leftrightarrow4x-1=0\)
\(\Rightarrow4x=1\)
\(\Rightarrow x=\dfrac{1}{4}\)
Vậy Pmax = -3 <=> x = 1/4
\(A=16x-9x^2+2021\)
\(A=-\left(9x^2-16x-2021\right)\)
\(A=-\left[\left(3x\right)^2-2\cdot3x\cdot\frac{8}{3}+\frac{64}{9}-\frac{18253}{9}\right]\)
\(A=-\left(3x-\frac{8}{3}\right)^2+\frac{18253}{9}\)
có \(-\left(3x-\frac{8}{3}\right)^2\le0\) nên \(A\le\frac{18253}{9}\)
dấu = xảy ra khi 3x - 8/3 = 0 <=> x = 8/9
vậy max A = 18253/9 khi x = 8/9
A = 16x - 9x2 + 2021
=\(-\left(3x\right)^2+2.3x.\frac{8}{3}-\frac{64}{9}+\frac{18253}{9}\)
\(=-\left(3x-\frac{8}{3}\right)^2+\frac{18253}{9}\le\frac{18253}{9}\)
=> Max A = 18253/9
Dấu "=" xảy ra <=> 3x - 8/3 = 0
<=> x = 8/9
Vậy Max A = 18253/9 <=> x = 8/9