Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C =- (4x2+4x+1) - (9y2 -6y +1) +3 = - (2x+1)2 - ( 3y -1)2 + 3 </ 3
C max = 3 khi x =-1/2 và y =1/3
D - dể suy nghĩ đã nhé
Ta có:
\(10x^2+10y^2+16xy-4x+4y+4=0\)
\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)
\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Dễ thấy cả 3 số hạng kia đều \(\ge0\)
Vậy để tổng của 3 số hạng =0 thì từng cái phải =0
\(\Rightarrow\left\{{}\begin{matrix}4\left(x+y\right)^2=0\\\left(x-1\right)^2=0\\\left(y+1\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\)
Thế kết quả trên vào B ta được
\(B=\left(-y+y\right)^{2012}+\left(1-2\right)^{2014}+\left(-1+1\right)^{2016}\)
\(B=1\)
3)
e)
b) Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3
= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1
= (x-3y)2 + (2x -1)2 + (y-1)2 +1
Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0
(2x -1)2 luôn lớn hơn hoặc bằng 0
(y-1)2 luôn lớn hơn hoặc bằng 0
=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0
=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0
Ta có : 5 - 4x2 + 4x
= 6 - 1 - 4x2 + 4x
= 6 - (4x2 - 4x + 1)
= 6 - (2x - 1)2
Mà (2x - 1)2 \(\ge0\forall x\)
Nên 6 - (2x - 1)2 \(\le6\forall x\)
Vậy GTLN cuả biểu thức là : 6 khi và chỉ khi x = \(\frac{1}{2}\)
1/
a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)
Dấu "=" xảy ra khi x=1/2
Vậy Amin=4 khi x=1/2
b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)
Dấu "=" xảy ra khi x=-1
Vậy Bmin = -4 khi x=-1
2/
a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)
Dấu "=" xảy ra khi x=3
Vậy Amax = 19 khi x=3
b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)
Dấu "=" xảy ra khi x=5/4
Vậy Bmax = 31/8 khi x=5/4
\(Q=4x^2+y^2+4x-10y+2016\)
\(Q=\left(2x\right)^2+2.2x+1+y^2-2.y.5+25+1990\)
\(Q=\left(2x+1\right)^2+\left(y-5\right)^2+1990\)
Vì \(\left(2x+1\right)^2\ge0\) với mọi x
\(\left(y-5\right)^2\ge0\) với mọi y
\(\Rightarrow\left(2x+1\right)^2+\left(y-5\right)^2\ge0\) với mọi x và y
\(\Rightarrow\left(2x+1\right)^2+\left(y-5\right)^2+1990\ge1990\)
\(\Rightarrow Qmin=1990\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\y-5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=5\end{matrix}\right.\)