Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- \(N=\frac{8x+12}{x^2+4}=\frac{-\left(x^2+4\right)+\left(x^2+8x+16\right)}{x^2+4}=\frac{\left(x+4\right)^2}{x^2+4}-1\ge-1\)
Vậy minN = -1 khi x = -4
- \(N=\frac{4\left(x^2+4\right)-4\left(x^2-2x+1\right)}{x^2+4}=-\frac{4\left(x-1\right)^2}{x^2+4}+4\le4\)
Vậy maxN = 4 khi x = 1
\(Q\le\sqrt{2\left(x-2+4-x\right)}=2\)
Bên cạnh đó \(2\le x\le4\)
=> \(Q\ge\sqrt{2}\)
Vậy GTLN là 2 đạt được khi x = 3
GTNN là \(\sqrt{2}\)đạt được khi x = 2 hoặc 4
Bạn ơi đề là M = \(\dfrac{x^2+x+1}{x^2+4}\) hay M = \(\dfrac{x^2+x+1}{x^2}+4\) vậy bn?
\(A=4-\sqrt{x^2-4x+4}\)
Ta có : \(\sqrt{x^2-4x+4}\ge0\)
\(\Rightarrow4-\sqrt{x^2-4x+4}\le4\)
hay \(A\le4\)
Dấu "=" xảy ra khi :
\(x^2-4x+4=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy \(A_{Max}=4\Leftrightarrow x=2\)
\(A=4-\sqrt{x^2-4x+4}\)
\(=4-\sqrt{\left(x-2\right)}^2\)
\(4-\left|x-2\right|\)
Vì \(\left|x-2\right|\ge0\)
\(\Rightarrow-\left|x-2\right|< 0\)
\(\Leftrightarrow4-\left|x-2\right|< 4\)
\(A\le4\)
Dấu " = " xảy ra khi x - 2 = 0 <=> x = 2
Vậy .....
\(y=\frac{x+1}{x^2+x+1}\Leftrightarrow y\left(x^2+x+1\right)=x+1\Leftrightarrow x^2y+xy+y-x-1=0\)
\(\Leftrightarrow yx^2+\left(y-1\right)x+y-1=0\)
*Khi y =0 => x = -1
*Khi y khác 0 ta có pt bậc 2 ẩn x tham số y :
\(\Delta=\left(y-1\right)^2-4y\left(y-1\right)=-3y^2+2y+1\)
Pt có nghiệm <=> - 3y2 +2y +1 >=0 <=> 3y2 -2y -1 <=0 <=> -1/3 <=y <=1
Vì y =0 < y = 1, nên 0 không phải là GTLN.
Vậy GTLN của y = 1 <=> x = 0
Cách khác lớp 8:
\(y=\frac{x^2+x+1-x^2}{x^2+x+1}=1-\frac{x^2}{x^2+x+1}\le1\), vì x2/x2 +x +1 <=0, với mọi x
Dấu = xảy ra khi x = 0
Xét \(P^2=2+\sqrt{\left(x-2\right)\left(4-x\right)}\)
Áp dụng bất đẳng thức \(2\sqrt{ab}\le a+b\)ta có
\(P^2\le2+\left(x-2\right)+\left(4-x\right)=4\)
Từ đó max \(P=2\Leftrightarrow x-2=4-x\Leftrightarrow x=3\)
cảm ơn bạn nhiều nha!!!!!!