\(B=-3x\left(x+3\right)-7\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Các bạn ơi giúp nk nhé !

Tìm GTLN của biểu thức A = -5²-2 | y+3 |+7

22 tháng 7 2019

\(A=x^2+3x+7\)

\(=x^2+2.1,5x+2,25+4,75\)

\(=\left(x+1,5\right)^2+4,75\ge4,75\)

Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)

22 tháng 7 2019

\(B=2x^2-8x\)

\(=2\left(x^2-4x\right)\)

\(=2\left(x^2-4x+4-4\right)\)

\(=2\left[\left(x-2\right)^2-4\right]\)

\(=2\left(x-2\right)^2-8\ge-8\)

Vậy \(B_{min}=-8\Leftrightarrow x=2\)

18 tháng 7 2017

Câu 3 kiểm tra lại đề lại với , nếu đúng thì phức tạp lắm, còn sửa lại đề thì là :

\(y^2+2y+4^x-2^{x+1}+2=0\)

\(=>\left(y^2+2y+1\right)+2^{2x}-2^x.2+1=0\)

\(=>\left(y+1\right)^2+\left(\left(2^x\right)^2-2^x.2.1+1^2\right)=0\)

\(=>\left(y+1\right)^2+\left(2^x-1\right)^2=0\)

Dấu = xảy ra khi :

\(\hept{\begin{cases}y+1=0\\2^x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=-1\\x=0\end{cases}}}\)

CHÚC BẠN HỌC TỐT........... 

18 tháng 7 2017

mk chịu

a: \(-x^2+4x-1\)

\(=-\left(x^2-4x+1\right)\)

\(=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5< =5\)

Dấu '=' xảy ra khi x=2

b: \(-3x^2+3x-7\)

\(=-3\left(x^2-x+\dfrac{7}{3}\right)\)

\(=-3\left(x^2-x+\dfrac{1}{4}+\dfrac{25}{12}\right)\)

\(=-3\left(x-\dfrac{1}{2}\right)^2-\dfrac{25}{4}\le-\dfrac{25}{4}\)

Dấu '=' xảy ra khi x=1/2

d: \(=-\left(3x+7\right)^2+2\left(3x+7\right)-34\)

\(=-\left[\left(3x+7\right)^2-2\left(3x+7\right)+34\right]\)

\(=-\left[\left(3x+7\right)^2-2\left(3x+7\right)+1+33\right]\)

\(=-\left(3x+7-1\right)^2-33\)

\(=-\left(3x+6\right)^2-33\le-33\)

Dấu '=' xảy ra khi x=-2

8 tháng 6 2018

đề dài v~

1.

a) \(f\left(x\right)=5x^2-2x+1\)

\(5f\left(x\right)=25x^2-10x+5\)

\(5f\left(x\right)=\left(25x^2-10x+1\right)+4\)

\(5f\left(x\right)=\left(5x-1\right)^2+4\)

Mà  \(\left(5x-1\right)^2\ge0\)

\(\Rightarrow5f\left(x\right)\ge4\)

\(\Leftrightarrow f\left(x\right)\ge\frac{4}{5}\)

Dấu " = " xảy ra khi :

\(5x-1=0\Leftrightarrow x=\frac{1}{5}\)

Vậy ....

b)  \(P\left(x\right)=3x^2+x+7\)

\(3P\left(x\right)=9x^2+3x+21\)

\(3P\left(x\right)=\left(9x^2+3x+\frac{1}{4}\right)+\frac{83}{4}\)

\(3P\left(x\right)=\left(3x+\frac{1}{2}\right)^2+\frac{83}{4}\)

Mà  \(\left(3x+\frac{1}{2}\right)^2\ge0\)

\(\Rightarrow3P\left(x\right)\ge\frac{83}{4}\)

\(\Leftrightarrow P\left(x\right)\ge\frac{83}{12}\)

Dấu "=" xảy ra khi :

\(3x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{6}\)

Vậy ...

c)  \(Q\left(x\right)=5x^2-3x-3\)

\(5Q\left(x\right)=25x^2-15x-15\)

\(\Leftrightarrow5Q\left(x\right)=\left(25x^2-15x+\frac{9}{4}\right)-\frac{69}{4}\)

\(\Leftrightarrow5Q\left(x\right)=\left(5x-\frac{3}{2}\right)^2-\frac{69}{4}\)

Mà  \(\left(5x-\frac{3}{2}\right)^2\ge0\)

\(\Rightarrow5Q\left(x\right)\ge\frac{-69}{4}\)

\(\Leftrightarrow Q\left(x\right)\ge-\frac{69}{20}\)

Dấu "=" xảy ra khi :

\(5x-\frac{3}{2}=0\Leftrightarrow x=0,3\)

Vậy ...

8 tháng 6 2018

2.

a)  \(f\left(x\right)=-3x^2+x-2\)

\(-3f\left(x\right)=9x^2-3x+6\)

\(-3f\left(x\right)=\left(9x^2-3x+\frac{1}{4}\right)+\frac{23}{4}\)

\(-3f\left(x\right)=\left(3x-\frac{1}{2}\right)^2+\frac{23}{4}\)

Mà  \(\left(3x-\frac{1}{2}\right)^2\ge0\)

\(\Rightarrow-3f\left(x\right)\ge\frac{23}{4}\)

\(\Leftrightarrow f\left(x\right)\le\frac{23}{12}\)

Dấu "=" xảy ra khi :

\(3x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{6}\)

Vậy ...

b)  \(P\left(x\right)=-x^2-7x+1\)

\(-P\left(x\right)=x^2+7x-1\)

\(-P\left(x\right)=\left(x^2+7x+\frac{49}{4}\right)-\frac{53}{4}\)

\(-P\left(x\right)=\left(x+\frac{7}{2}\right)^2-\frac{53}{4}\)

Mà  \(\left(x+\frac{7}{2}\right)^2\ge0\)

\(\Rightarrow-P\left(x\right)\ge-\frac{53}{4}\)

\(\Leftrightarrow P\left(x\right)\le\frac{53}{4}\)

Dấu "=" xảy ra khi :

\(x+\frac{7}{2}=0\Leftrightarrow x=-\frac{7}{2}\)

Vậy ...

c)  \(Q\left(x\right)=-2x^2+x-8\)

\(-2Q\left(x\right)=4x^2-2x+16\)

\(-2Q\left(x\right)=\left(4x^2-2x+\frac{1}{4}\right)+\frac{63}{4}\)

\(-2Q\left(x\right)=\left(2x-\frac{1}{2}\right)^2+\frac{63}{4}\)

Mà :  \(\left(2x-\frac{1}{2}\right)^2\ge0\)

\(\Rightarrow-2Q\left(x\right)\ge\frac{63}{4}\)

\(\Leftrightarrow Q\left(x\right)\le-\frac{63}{8}\)

Dấu "=" xảy ra khi :

\(2x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{4}\)

Vậy ...

AH
Akai Haruma
Giáo viên
4 tháng 3 2019

Câu 1:

Tìm max:

Áp dụng BĐT Bunhiacopxky ta có:

\(y^2=(3\sqrt{x-1}+4\sqrt{5-x})^2\leq (3^2+4^2)(x-1+5-x)\)

\(\Rightarrow y^2\leq 100\Rightarrow y\leq 10\)

Vậy \(y_{\max}=10\)

Dấu đẳng thức xảy ra khi \(\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\Leftrightarrow x=\frac{61}{25}\)

Tìm min:

Ta có bổ đề sau: Với $a,b\geq 0$ thì \(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)

Chứng minh:

\(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)

\(\Leftrightarrow (\sqrt{a}+\sqrt{b})^2\geq a+b\)

\(\Leftrightarrow \sqrt{ab}\geq 0\) (luôn đúng).

Dấu "=" xảy ra khi $ab=0$

--------------------

Áp dụng bổ đề trên vào bài toán ta có:

\(\sqrt{x-1}+\sqrt{5-x}\geq \sqrt{(x-1)+(5-x)}=2\)

\(\sqrt{5-x}\geq 0\)

\(\Rightarrow y=3(\sqrt{x-1}+\sqrt{5-x})+\sqrt{5-x}\geq 3.2+0=6\)

Vậy $y_{\min}=6$

Dấu "=" xảy ra khi \(\left\{\begin{matrix} (x-1)(5-x)=0\\ 5-x=0\end{matrix}\right.\Leftrightarrow x=5\)

AH
Akai Haruma
Giáo viên
4 tháng 3 2019

Bài 2:

\(A=\sqrt{(x-1994)^2}+\sqrt{(x+1995)^2}=|x-1994|+|x+1995|\)

Áp dụng BĐT dạng \(|a|+|b|\geq |a+b|\) ta có:

\(A=|x-1994|+|x+1995|=|1994-x|+|x+1995|\geq |1994-x+x+1995|=3989\)

Vậy \(A_{\min}=3989\)

Đẳng thức xảy ra khi \((1994-x)(x+1995)\geq 0\Leftrightarrow -1995\leq x\leq 1994\)

NV
5 tháng 10 2020

\(A=-3\left(x+1\right)^2+7\le7\)

\(A_{max}=7\) khi \(x=-1\)

\(B=-\left(x-\frac{3}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\)

\(B_{max}=\frac{5}{4}\) khi \(x=\frac{3}{2}\)

\(C=-x^2-2x+2=-\left(x+1\right)^2+3\le3\)

\(C_{max}=3\) khi \(x=-1\)

\(D=-\left[\left(x+2y\right)^2+\left(x-1\right)^2-4\right]=-\left(x+2y\right)^2-\left(x-1\right)^2+4\le4\)

\(D_{max}=4\) khi \(\left\{{}\begin{matrix}x=1\\y=-\frac{1}{2}\end{matrix}\right.\)

15 tháng 8 2020

BÀI 1:

\(A=\left(x-10\right)^2+103\)

Có:    \(\left(x-10\right)^2\ge0\forall x\)

=>   \(A\ge103\)

DẤU "=" XẢY RA <=>   \(\left(x-10\right)^2=0\Rightarrow x=10\)

\(B=\left(2x+1\right)^2-6\)

Có:   \(\left(2x+1\right)^2\ge0\forall x\)

=>   \(B\ge-6\)

DẤU "=" XẢY RA <=>   \(\left(2x+1\right)^2=0\Leftrightarrow x=-\frac{1}{2}\)

BÀI 3:

a) \(A=y^4+y^3-y^2-2y-\left(y^4+y^3+y^2-2y^2-2y-2\right)\)

\(A=y^4+y^3-y^2-2y-y^4-y^3+y^2+2y+2\)

\(A=2\)

b)   \(B=\left(2x\right)^3+3^3-8x^3+2\)

\(B=29\)

15 tháng 8 2020

Bài 1.

A = x2 - 20x + 103

A = ( x2 - 20x + 100 ) + 3

A = ( x - 10 )2 + 3 ≥ 3 ∀ x

Đẳng thức xảy ra <=> x - 10 = 0 => x = 10

=> MinA = 3 <=> x = 10

B = 4x2 + 4x - 5

B = ( 4x2 + 4x + 1 ) - 6

B = ( 2x + 1 )2 - 6 ≥ -6 ∀ x

Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2

=> MinB = -6 <=> x = -1/2

Bài 2.

A = -x2 + 8x - 21

A = -x2 + 8x - 16 - 5

A = -( x2 - 8x + 16 ) - 5

A = -( x - 4 )2 - 5 ≤ -5 ∀ x

Đẳng thức xảy ra <=> x - 4 = 0 => x = 4

=> MaxA = -5 <=> x = 4

B = lỗi đề :>

Bài 3.

a) y( y3 + y2 - y - 2 ) - ( y2 - 2 )( y2 + y + 1 )

= y4 + y3 - y2 - 2y - ( y4 + y3 + y2 - 2y2 - 2y - 2 )

= y4 + y3 - y2 - 2y - y4 - y3 - y2 + 2y2 + 2y + 2

= 2 ( đpcm )

b) ( 2x + 3 )( 4x2 - 6x + 9 ) - 2( 4x3 - 1 )

= ( 2x )3 + 27 - 8x3 + 2

= 8x3 + 27 - 8x3 + 2

= 29 ( đpcm )