\(\left|x-1004\right|\)-\(\left|x+1003\ri...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2017

\(A=\left|x-1004\right|-\left|x+1003\right|\)

Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)

\(\Leftrightarrow\left|x-1004\right|-\left|x+1003\right|\le\left|x-1004-x-1003\right|\)

\(\Leftrightarrow\left|x-1004\right|-\left|x+1003\right|\le2007\)

Vậy GTLN của A là 2007. Dấu "=" xảy ra khi \(x\ge1004\) hoặc \(x\le1003\).

30 tháng 9 2017

- Câu B dùng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) làm tương tự nhé bạn!

1 tháng 6 2019

+)Xét x<−1003x<−1003 suy ra

{x+1003<0⇒|x+1003|=−(x+1003)=−x−1003x−1004<0⇒|x−1004|=−(x−1004)=−x+1004{x+1003<0⇒|x+1003|=−(x+1003)=−x−1003x−1004<0⇒|x−1004|=−(x−1004)=−x+1004

Khi đó A=(−x+1004)−(−x−1003)=2007A=(−x+1004)−(−x−1003)=2007

+)Xét −1003≤x<1004−1003≤x<1004 suy ra

{x≥−1003⇒x+1003≥0⇒|x+1003|=x+1003x<1004⇒x−1004<0⇒|x−1004|=−(x−1004)=−x+1004{x≥−1003⇒x+1003≥0⇒|x+1003|=x+1003x<1004⇒x−1004<0⇒|x−1004|=−(x−1004)=−x+1004

Khi đó A=(−x+1004)−(x+1003)=1−2xA=(−x+1004)−(x+1003)=1−2x

+)Xét x≥1004x≥1004 suy ra

{x−1004≥0⇒|x−1004|=x−1004x+1003≥0⇒|x+1003|=x+1003{x−1004≥0⇒|x−1004|=x−1004x+1003≥0⇒|x+1003|=x+1003

Khi đó A=(x−1004)−(x+1003)=−2007A=(x−1004)−(x+1003)=−2007

Ta thấy: Với x<−1003x<−1003 thì A đạt giá trị lớn nhất là 2007

Vậy MaxA=2007MaxA=2007 khi x<−1003

~ Học tốt ~

1 tháng 6 2019

Ta chứng minh: \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)

\(\Leftrightarrow\left(\left|a\right|-\left|b\right|\right)^2\le\left(\left|a-b\right|\right)^2\)

\(\Leftrightarrow a^2-2\left|ab\right|+b^2\le a^2-2ab+b^2\)

\(\Leftrightarrow-\left|ab\right|\le-ab\)

\(\Leftrightarrow\left|ab\right|\ge ab\)(đúng) 

Dấu "=" khi ab > 0

Áp dụng:

\(A=\left|x-1004\right|-\left|x+1003\right|\)

\(\le\left|x-1004-x-1003\right|=2007\)

Dấu "=" khi \(\orbr{\begin{cases}x\ge1004\\x\le-1003\end{cases}}\)

17 tháng 2 2020

https://hoc24.vn/hoi-dap/question/216689.html

17 tháng 2 2020

Bạn tham khảo tại đây nhé: Câu hỏi của Vuong Ngoc Nguyen Ha (Gau Truc)

Chúc bạn học tốt!

13 tháng 3 2018

Đặt: \(\left|x-2017\right|=t\ge0\) ta có: \(l=\frac{t+2017}{t+2018}=\frac{t+2018-1}{t+2018}=1-\frac{1}{t+2018}\ge1-\frac{1}{2018}=\frac{2017}{2018}\)

Dấu "=" xảy ra khi: \(t=0\Leftrightarrow x=2017\)

14 tháng 3 2018

Đặt: |x−2017|=t≥0 ta có: l=t+2017t+2018 =t+2018−1t+2018 =1−1t+2018 ≥1−12018 =20172018 

Dấu "=" xảy ra khi: t=0⇔x=2017

 ...

..

6 tháng 3 2020

\(A=\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)

\(A=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}\)

\(A=1-\frac{1}{\left|x-2017\right|+2019}\)

A nhỏ nhất khi \(1-\frac{1}{\left|x-2017\right|+2019}\)nhỏ nhất

khi \(\frac{1}{\left|x-2017\right|+2019}\)lớn nhất

khi \(\left|x-2017\right|+2019\)nhỏ nhất

mà |x - 2017| \(\ge0\)

=> |x - 2017| + 2019 \(\ge2019\)

Vậy A nhỏ nhất khi A = 2019 khi x - 2017 = 0 => x = 2017

6 tháng 3 2020

\(A=\frac{\backslash x-2017\backslash+2018}{\backslash x-2017\backslash+2019}\) 

\(A=\frac{2018}{2019}\)

20 tháng 12 2019

\(A=\left|x-1004\right|-\left|x+1003\right|\)

Áp dụng bất đẳng thức \(\left|a\right|-\left|b\right|\le\left|a-b\right|\) ta có:

\(A=\left|x-1004\right|-\left|x+1003\right|\le\left|\left(x-1004\right)-\left(x+1003\right)\right|\)

\(\Rightarrow A\le\left|x-1004-x-1003\right|\)

\(\Rightarrow A\le\left|-2007\right|\)

\(\Rightarrow A\le2007.\)

Đẳng thức xảy ra khi \(x\le-1003.\)

Vậy \(MAX_A=2007\) khi \(x\le-1003.\)

Chúc bạn học tốt!

24 tháng 7 2017

a ) \(A=\left|x+1\right|+24\)

Ta có : \(\left|x+1\right|\ge0\)

\(\Leftrightarrow\left|x+1\right|+24\ge24\)

Vậy \(Min_A=24\Leftrightarrow x=-1.\)

\(B=1,25+\left|3,5-x\right|\)

Ta có : \(\left|3,5-x\right|\ge0\)

\(1,25+\left|3,5-x\right|\ge1,25\)

Vậy \(Min_B=1,25\Leftrightarrow x=3,5.\)

b ) \(A=-\left|x-1\right|+24\)

Ta có : \(-\left|x-1\right|\le0\)

\(\Leftrightarrow-\left|x-1\right|+24\le24\)

Vậy \(Max_A=24\Leftrightarrow x=1.\)

\(B=1,25-\left|5-x\right|\)

Ta có : \(-\left|5-x\right|\le0\)

\(\Leftrightarrow1,25-\left|5-x\right|\le1,25\)

Vậy \(Max_B\Leftrightarrow x=5.\)

24 tháng 7 2017

Bài 5:

Mỗi câu làm 1 ý nhá!

a, Với mọi giá trị của \(x\in R\) ta có:

\(\left|x+1\right|+24\ge24\)

hay \(A\ge24\) với mọi giá trị của \(x\in R\).

Để \(A=24\) thì \(\left|x+1\right|+24=24\)

\(\Rightarrow\left|x+1\right|=0\Rightarrow x=-1\)

Vậy..............

b,

Với mọi giá trị của \(x\in R\) ta có:

\(-\left|x-1\right|\le0\Rightarrow-\left|x-1\right|+24\le24\)

hay \(A\le24\) với mọi giá trị của \(x\in R\).

Để \(A=24\) thì \(-\left|x-1\right|+24=24\)

\(\Rightarrow-\left|x-1\right|=0\Rightarrow x=1\)

Vậy..............

Chúc bạn học tốt!!!

17 tháng 10 2019

1. a) Ta có: M  = |x + 15/19| \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19

Vậy MinM = 0 <=> x = -15/19

b) Ta có: N = |x  - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7

Vậy MinN = -1/2 <=> x = 4/7

17 tháng 10 2019

2a) Ta có: P = -|5/3 - x|  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3

Vậy MaxP = 0 <=> x = 5/3

b) Ta có: Q = 9 - |x - 1/10| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10

Vậy MaxQ = 9 <=> x = 1/10

5 tháng 3 2019

a)\(MaxA=\sqrt{3}\)<=>Dấu ''='' xảy ra

<=>x=2

b) Min A =2019<=>Dấu ''='' xảy ra

<=>2x-5=0

<=>x=5/2

5 tháng 3 2019

nnznznxk