![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
\(A=\dfrac{81x}{3-x}+\dfrac{3}{x}=\dfrac{81x}{3-x}+\left(\dfrac{3}{x}-1\right)+1=\dfrac{81x}{3-x}+\dfrac{3-x}{x}+1\ge2\sqrt{\dfrac{81x}{3-x}.\dfrac{3-x}{x}}+1=18+1=19\)
Dấu "=" xảy ra <=> x = 0,3
Câu 2:
\(\dfrac{1}{3x-2\sqrt{6x}+5}=\dfrac{1}{\left(3x-2\sqrt{6x}+2\right)+3}=\dfrac{1}{\left(x\sqrt{3}-\sqrt{2}\right)^2+3}\le\dfrac{1}{3}\)
Dấu "=" xảy ra <=> \(x=\sqrt{\dfrac{2}{3}}\)
Câu 3:
\(A=2014\sqrt{x}+2015\sqrt{1-x}=2014\left(\sqrt{x}+\sqrt{1-x}\right)+\sqrt{1-x}\)
Ta có: \(\left(\sqrt{x}+\sqrt{1-x}\right)^2=x+1-x+2\sqrt{x\left(1-x\right)}=1+2\sqrt{x\left(1-x\right)}\ge1\)
=> \(A=2014\left(\sqrt{x}-\sqrt{1-x}\right)+\sqrt{1-x}\ge2014+\sqrt{1-x}\ge2014\)
Dấu "=" xảy ra <=> x = 1
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
Tìm max:
Áp dụng BĐT Bunhiacopxky ta có:
\(y^2=(3\sqrt{x-1}+4\sqrt{5-x})^2\leq (3^2+4^2)(x-1+5-x)\)
\(\Rightarrow y^2\leq 100\Rightarrow y\leq 10\)
Vậy \(y_{\max}=10\)
Dấu đẳng thức xảy ra khi \(\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\Leftrightarrow x=\frac{61}{25}\)
Tìm min:
Ta có bổ đề sau: Với $a,b\geq 0$ thì \(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)
Chứng minh:
\(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)
\(\Leftrightarrow (\sqrt{a}+\sqrt{b})^2\geq a+b\)
\(\Leftrightarrow \sqrt{ab}\geq 0\) (luôn đúng).
Dấu "=" xảy ra khi $ab=0$
--------------------
Áp dụng bổ đề trên vào bài toán ta có:
\(\sqrt{x-1}+\sqrt{5-x}\geq \sqrt{(x-1)+(5-x)}=2\)
\(\sqrt{5-x}\geq 0\)
\(\Rightarrow y=3(\sqrt{x-1}+\sqrt{5-x})+\sqrt{5-x}\geq 3.2+0=6\)
Vậy $y_{\min}=6$
Dấu "=" xảy ra khi \(\left\{\begin{matrix} (x-1)(5-x)=0\\ 5-x=0\end{matrix}\right.\Leftrightarrow x=5\)
Bài 2:
\(A=\sqrt{(x-1994)^2}+\sqrt{(x+1995)^2}=|x-1994|+|x+1995|\)
Áp dụng BĐT dạng \(|a|+|b|\geq |a+b|\) ta có:
\(A=|x-1994|+|x+1995|=|1994-x|+|x+1995|\geq |1994-x+x+1995|=3989\)
Vậy \(A_{\min}=3989\)
Đẳng thức xảy ra khi \((1994-x)(x+1995)\geq 0\Leftrightarrow -1995\leq x\leq 1994\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:\(A=\dfrac{12x-9}{x^2+1}\)
\(\Leftrightarrow A-3=\dfrac{12x-9}{x^2+1}-\dfrac{3x^2+3}{x^2+1}\)
\(\Leftrightarrow A-3=\dfrac{12x-9-3x^2-3}{x^2+1}\)
\(\Leftrightarrow A-3=\dfrac{12x-3x^2-12}{x^2+1}\)
\(\Leftrightarrow A-3=\dfrac{-3\left(x^2-4x+4\right)}{x^2+1}\)
\(\Leftrightarrow A-3=\dfrac{-3\left(x-2\right)^2}{x^2+1}\le0\)
\(\Rightarrow A\le3\)
Vậy GTLN của A là 3 \(\Leftrightarrow x=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Sai rồi nhưng dù sao cx cảm ơn bn vì đã giúp mk
Thanks for helpme.
![](https://rs.olm.vn/images/avt/0.png?1311)
1)???
2) \(A=\dfrac{3x^2-8x+6}{x^2-2x+1}=2+\dfrac{x^2-4x+4}{x^2-2x+1}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)
Vậy GTNN của A là 2 tại x=2.
3) \(\)Đặt \(a=\dfrac{1}{x+100}\Rightarrow x=\dfrac{1}{a}-100\)
\(D=\dfrac{x}{\left(x+100\right)^2}=a^2x=a^2\left(\dfrac{1}{a}-100\right)=a-100a^2=-100\left(a^2-\dfrac{a}{100}+\dfrac{1}{40000}-\dfrac{1}{40000}\right)=-100\left(a-\dfrac{1}{200}\right)^2+\dfrac{1}{400}\le\dfrac{1}{400}\)
Vậy GTLN của D là \(\dfrac{1}{400}\) tại \(a=\dfrac{1}{200}\Leftrightarrow x=100\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(=\dfrac{x^3-x^2+x+3\left(x^2-1\right)+x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{x^3-x^2+2x+4+3x^2-3}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x^3+2x^2+2x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{x^2+x+1}{x^2-x+1}\)
b: \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
\(x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
=>A>0 với mọi x<>-1
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{x^3+1}\)
\(A=\frac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{3-3x}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(A=\frac{x^3-x^2+x-3-3x+x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(A=\frac{1}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{1}{x^3+1}\)
gấp ạ, 10p nữa mình phải xong
\(A=\dfrac{x^2+3}{x^2+1}=1+\dfrac{2}{x^2+1}\le1+\dfrac{2}{1}=3\)
" = " \(\Leftrightarrow x=0\)