Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vào câu hỏi tương tự có lẽ sẽ gợi cho bn ý tưởng để làm bài này đó
chúc học tốt !
Do \(x+y+z=0;-1\le x,y,z\le1\)
Suy ra : Trong 3 số x,y,z tồn tại hai số cùng dấu
Giả sử : \(x\ge0;y\ge0;z\le0\)
Từ : \(x+y+z=0\)\(\Rightarrow z=-x-y\)
\(x^2+y^4+z^6\le\left|x\right|+\left|y\right|+\left|z\right|=x+y-z=-2z\)
\(\Rightarrow x^2+y^4+z^6\le-2z\le2\)
Vậy : \(x^2+y^4+z^6\le2\)
Từ điều kiện đề bài ta có:
\(x^2,y^2,z^2\le1\)
Trong 3 số x, y, z có 2 số cùng dấu: Giả sử là x,y (các trường hợp khác làm tương tự)
\(\Rightarrow xy\ge0\)
Ta có:
\(x^2+y^4+z^6\le x^2+y^2+z^2\le z^2+\left(x^2+2xy+y^2\right)=2z^2\le2\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
=> x = y = z
Ta có: \(A=\frac{2013x^2+y^2+z^2}{x^2+2013y^2+z^2}=\frac{2013x^2+x^2+x^2}{x^2+2013x^2+x^2}=\frac{2015x^2}{2015x^2}=1\)