\(A=-2x^2+4x+7\)

b) \(B=45-4x...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2019

A= 9- 2.(x^2-2x+ 1)= 9- 2.(x-1)2

Lại có (x-1)2 \(\ge\)0 => A\(\le\)

Vậy max A =9 <=> x-1=0 => x=1

b, B= 139/3-((x.√3)2+2.√3.2/(√3)+4/3)

= 139/3-(√3.x+2/√3)2

Lại có (√3.x+2/√3)2\(\ge\)0 => B\(\le\)139/3

Vậy maxB = 139/3 <=> x = -2/3

c,C= 25-2(x^2-2.x.3+9)= 25- 2(x-3)2

Laạạiại ccó (x-3)2\(\ge\)0

=> C\(\le\)25

Để max C = 25 <=> x-3= 0 <=> x=3

d, D=2163-( x^2-2.x.12+144)= 2163-(x-12)2

Lại có (x-12)2\(\ge\)

=> D\(\le\)2163

Để max D = 2163 <=> x-12 = 0 <=> x= 12

13 tháng 6 2019

hình như bạn nhầm đề à

\(a,2x^2+7x+100=2\left(x+\frac{7}{4}\right)^2+\frac{751}{8}\ge\frac{751}{8}\)

Dấu " =" xảy ra khi 

\(x=\frac{-7}{4}\)

Vậy..............................

\(b,4x^2-25x+9=4\left(x^2-\frac{25}{4}x+\frac{9}{4}\right)\)

\(=4\left(x-\frac{25}{8}\right)^2-\frac{481}{16}\ge\frac{-481}{16}\)

Dấu "=" xảy ra khi  \(x=\frac{25}{8}\)

Vậy............................................

13 tháng 6 2019

A= 2.(x2+2.x.7/4+49/16)2+751/8

= 2.(x+7/4)2+751/8

Lại có (x+7/4)2\(\ge\)0

=> A \(\ge\)751/8

Vậy Min A = 751/8 <=> x= -7/4

b,B= (2x)2-2.2x.25/4+625/16 -481/16

= (2x-25/4)2-481/16 

Lại có (2x-25/4)2\(\ge\)0

=> B \(\ge\)-481/16

Vậy min B = -481/16 <=> x= 25/8

(Máy mình hỏng từ đây mình làm tắt một chút)

c, C= (3x)2-24x+16+40= (3x-4)2+40

Lại có (3x-4)2\(\ge\)0

=> C \(\ge\)40 

Vậy Min C = 40 <=> 3x-4 =0 <=> x= 4/3

d, D= (2x)2+4x+1+10= (2x+1)2+10

Lại có (2x+1)\(\ge\)0

=> D\(\ge\)10

Vậy min D = 10 <=> x= -1/2

e,E= x^2-2x+1+y2 -4y+4+2

= (x-1)2+(y-2)2+2

Lại có (x-1)2+(y-2)2\(\ge\)0

=> E \(\ge\)2

Vậy Min E = 2 <=> x= 1; y=2

27 tháng 7 2018

a) \(A=x^2-2x-6\)

\(A=\left(x^2-2x+1\right)-7\)

\(A=\left(x-1\right)^2-7\)

\(\left(x-1\right)^2\) luôn \(\ge\)\(0\) => GTNN của biểu thức là -7 với \(\left(x-1\right)^2=0\) tức x=1

a: \(=x^2-2x+1-7=\left(x-1\right)^2-7>=-7\)

Dấu '=' xảy ra khi x=1

b: \(=4x^2-4x+1+6=\left(2x-1\right)^2+6>=6\)

Dấu '=' xảy ra khi x=1/2

c: \(=9x^2-6x+1-1=\left(3x-1\right)^2-1>=-1\)

Dấu '=' xảy ra khi x=1/3

d: \(=x^2+12x+36-36=\left(x+6\right)^2-36>=-36\)

Dấu '=' xảy ra khi x=-6

e: \(=x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}>=-\dfrac{9}{4}\)

Dấu '=' xảy ra khi x=3/2

22 tháng 7 2019

\(A=x^2+3x+7\)

\(=x^2+2.1,5x+2,25+4,75\)

\(=\left(x+1,5\right)^2+4,75\ge4,75\)

Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)

22 tháng 7 2019

\(B=2x^2-8x\)

\(=2\left(x^2-4x\right)\)

\(=2\left(x^2-4x+4-4\right)\)

\(=2\left[\left(x-2\right)^2-4\right]\)

\(=2\left(x-2\right)^2-8\ge-8\)

Vậy \(B_{min}=-8\Leftrightarrow x=2\)

28 tháng 9 2020

Thanks bạn!haha

28 tháng 9 2020

Thanks bạn!haha

7 tháng 10 2019

a) \(x^2+6x-3\)

\(=x^2+6x+9-12\)

\(=\left(x+3\right)^2-12\ge-12\)

Vậy GTNN của bt là -12\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

7 tháng 10 2019

b) \(-x^2+4x+3\)

\(=-\left(x^2-4x-3\right)\)

\(=-\left(x^2-4x+4-7\right)\)

\(=-\left[\left(x-2\right)^2-7\right]\)

\(=-\left(x-2\right)^2+7\le7\)

Vậy GTLN của bt là 7\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)