Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=2x^2-2xy-y^2+2xy=2x^2-y^2\)
\(=2\cdot\dfrac{4}{9}-\dfrac{1}{9}=\dfrac{7}{9}\)
b: \(B=5x^2-20xy-4y^2+20xy=5x^2-4y^2\)
\(=5\cdot\dfrac{1}{25}-4\cdot\dfrac{1}{4}\)
=1/5-1=-4/5
c \(C=x^3+6x^2+12x+8=\left(x+2\right)^3=\left(-9\right)^3=-729\)
d: \(D=20x^3-10x^2+5x-20x^2+10x+4\)
\(=20x^3-30x^2+15x+4\)
\(=20\cdot5^3-30\cdot5^2+15\cdot2+4=1784\)
Hướng dẫn thôi nha bạn.
Giải:
Bài 1.
- Nhân đơn thức với đa thức: Nhân đơn thức với từng hạng tử của đa thức. (Rút gọn các hạng tử đồng dạng)
VD: Câu a)
\(2x\left(x^2-7x-3\right)\)
\(=2x.x^2-2x.7x-2x.3\)
\(=2x^3-14x^2-6x\)
- Nhân đa thức với đa thức: Nhân từng hạng tử của đa thức này với từng hạng tử của đa thức kia. (Rút gọn các hạng tử đồng dạng)
VD: Câu e)
\(\left(x^2-2x+3\right)\left(x-4\right)\)
\(=x^2.x-x^2.4-2x.x+2x.4+3.x-3.4\)
\(=x^3-4x^2-2x^2+8x+3x-12\)
\(=x^3-6x^2+11x-12\)
Bài 2.
Áp dụng hằng đẳng thức (số 1 và số 2)
VD: \(892^2+892.216+108^2\)
\(=892^2+2.892.108+108^2\)
\(=\left(892+108\right)^2\)
\(=1000^2=1000000\)
Bài 3: Chủ yếu áp dụng hằng đẳng thức và phương pháp đặt nhân tử.
VD: Câu a)
\(7x^2-28=0\)
\(\Leftrightarrow7\left(x^2-4\right)=0\)
\(\Leftrightarrow x^2-4=0\left(7\ne0\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)
Bài 4: Áp dụng hằng đẳng thức
\(M=\left(x+3\right)\left(x^2-3x+9\right)-\left(x^3+54-x\right)\)
\(\Leftrightarrow M=x^3+27-\left(x^3+54-x\right)\)
\(\Leftrightarrow M=x^3+27-x^3-54+x\)
\(\Leftrightarrow M=-27+x\)
Thay \(x=27\)
\(\Leftrightarrow M=-27+27=0\)
Vậy ...
1)
a) \(\dfrac{5x}{10}=\dfrac{x}{2}\)
b) \(\dfrac{4xy}{2y}=2x\left(y\ne0\right)\)
c) \(\dfrac{21x^2y^3}{6xy}=\dfrac{7xy^2}{2}\left(xy\ne0\right)\)
d) \(\dfrac{2x+2y}{4}=\dfrac{2\left(x+y\right)}{4}=\dfrac{x+y}{2}\)
e) \(\dfrac{5x-5y}{3x-3y}=\dfrac{5\left(x-y\right)}{3\left(x-y\right)}=\dfrac{5}{3}\left(x\ne y\right)\)
f) \(\dfrac{-15x\left(x-y\right)}{3\left(y-x\right)}=-5x\dfrac{x-y}{y-x}=-5x\dfrac{x-y}{-\left(x-y\right)}\)
\(=-5x.\left(-1\right)=5x\left(x\ne y\right)\)
2)
a) Nhớ ghi ĐK vào nhá, lười quá :V\(\dfrac{x^2-16}{4x-x^2}=-\dfrac{\left(x-4\right)\left(x+4\right)}{x^2-4x}=\dfrac{\left(x-4\right)\left(x+4\right)}{x\left(x-4\right)}=\dfrac{x+4}{x}\)
b) \(\dfrac{x^2+4x+3}{2x+6}=\dfrac{x^2+3x+x+3}{2\left(x+3\right)}=\dfrac{x\left(x+3\right)+\left(x+3\right)}{2\left(x+3\right)}\)
\(=\dfrac{\left(x+3\right)\left(x+1\right)}{2\left(x+3\right)}=\dfrac{x+1}{2}\)
c) \(\dfrac{15x\left(x+3\right)^3}{5y\left(x+y\right)^2}=\dfrac{3x\left(x+3\right)^3}{y\left(x+y\right)^2}\) ( câu này có gì đó sai sai )
d) \(\dfrac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}=\dfrac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}\)
\(=\dfrac{8\left(x-y\right)}{10\left(x-y\right)}=\dfrac{8}{10}=\dfrac{4}{5}\)
e) \(\dfrac{2x+2y+5x+5y}{2x+2y-5x-5y}=\dfrac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}\)
\(=\dfrac{7\left(x+y\right)}{-3\left(x+y\right)}=-\dfrac{7}{3}\)
\(A=3x^2-5x+3=3(x^2-\frac{5}{3}x)+3\)
\(=3(x^2-\frac{5}{3}x+\frac{5^2}{6^2})+\frac{11}{12}=3(x-\frac{5}{6})^2+\frac{11}{12}\)
Vì \((x-\frac{5}{6})^2\geq 0, \forall x\Rightarrow A\geq 3.0+\frac{11}{12}=\frac{11}{12}\)
Vậy A(min)$=\frac{11}{12}$ khi $x=\frac{5}{6}$
\(B=2x^2+2x+1=2(x^2+x+\frac{1}{4})+\frac{1}{2}\)
\(=2(x+\frac{1}{2})^2+\frac{1}{2}\geq 2.0+\frac{1}{2}=\frac{1}{2}\)
Vậy \(B_{\min}=\frac{1}{2}\) tại \((x+\frac{1}{2})^2=0\Leftrightarrow x=\frac{-1}{2}\)
C)
\(C=2x^2+y^2+10x-2xy+27\)
\(=(x^2+10x+25)+(x^2+y^2-2xy)+2\)
\(=(x+5)^2+(x-y)^2+2\)
Vì \((x+5)^2\ge 0, (x-y)^2\geq 0\Rightarrow C\geq 0+0+2=2\)
Vậy \(C_{\min}=2\) tại \(\left\{\begin{matrix} (x+5)^2=0\\ (x-y)^2=0\end{matrix}\right.\Leftrightarrow x=y=-5\)
Bài 1:
a) \(3x^2-2x(5+1,5x)+10=3x^2-(10x+3x^2)+10\)
\(=10-10x=10(1-x)\)
b) \(7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)\)
\(=28xy-7x^2+(4y^2-28xy)-(4y^2-7x)\)
\(=-7x^2+7x=7x(1-x)\)
c)
\(\left\{2x-3(x-1)-5[x-4(3-2x)+10]\right\}.(-2x)\)
\(\left\{2x-(3x-3)-5[x-(12-8x)+10]\right\}(-2x)\)
\(=\left\{3-x-5[9x-2]\right\}(-2x)\)
\(=\left\{3-x-45x+10\right\}(-2x)=(13-46x)(-2x)=2x(46x-13)\)
Bài 2:
a) \(3(2x-1)-5(x-3)+6(3x-4)=24\)
\(\Leftrightarrow (6x-3)-(5x-15)+(18x-24)=24\)
\(\Leftrightarrow 19x-12=24\Rightarrow 19x=36\Rightarrow x=\frac{36}{19}\)
b)
\(\Leftrightarrow 2x^2+3(x^2-1)-5x(x+1)=0\)
\(\Leftrightarrow 2x^2+3x^2-3-5x^2-5x=0\)
\(\Leftrightarrow -5x-3=0\Rightarrow x=-\frac{3}{5}\)
\(2x^2+3(x^2-1)=5x(x+1)\)
\(A=-3\left(x+1\right)^2+7\le7\)
\(A_{max}=7\) khi \(x=-1\)
\(B=-\left(x-\frac{3}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\)
\(B_{max}=\frac{5}{4}\) khi \(x=\frac{3}{2}\)
\(C=-x^2-2x+2=-\left(x+1\right)^2+3\le3\)
\(C_{max}=3\) khi \(x=-1\)
\(D=-\left[\left(x+2y\right)^2+\left(x-1\right)^2-4\right]=-\left(x+2y\right)^2-\left(x-1\right)^2+4\le4\)
\(D_{max}=4\) khi \(\left\{{}\begin{matrix}x=1\\y=-\frac{1}{2}\end{matrix}\right.\)
\(A=x^2+3x+7\)
\(=x^2+2.1,5x+2,25+4,75\)
\(=\left(x+1,5\right)^2+4,75\ge4,75\)
Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)
\(B=2x^2-8x\)
\(=2\left(x^2-4x\right)\)
\(=2\left(x^2-4x+4-4\right)\)
\(=2\left[\left(x-2\right)^2-4\right]\)
\(=2\left(x-2\right)^2-8\ge-8\)
Vậy \(B_{min}=-8\Leftrightarrow x=2\)
Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)
\(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)
\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\)
\(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)
\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)
\(B=-2x^2-x+5\)
\(=-2\left(x^2+\dfrac{1}{2}x-\dfrac{5}{2}\right)\)
\(=-2\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}-\dfrac{41}{16}\right)\)
\(=-2\left(x+\dfrac{1}{4}\right)^2+\dfrac{41}{8}\le\dfrac{41}{8}\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow x+\dfrac{1}{4}=0\Leftrightarrow x=-\dfrac{1}{4}\)
Vậy Max B là : \(\dfrac{41}{8}\Leftrightarrow x=-\dfrac{1}{4}\)
\(A=-3x^2+x-2\)
\(=-3\left(x^2-\dfrac{1}{3}x+\dfrac{2}{3}\right)\)
\(=-3\left(x^2-2x.\dfrac{1}{6}+\dfrac{1}{36}+\dfrac{23}{36}\right)\)
\(=-3\left[\left(x-\dfrac{1}{6}\right)^2+\dfrac{23}{36}\right]\)
\(=-3\left(x-\dfrac{1}{6}\right)^2-\dfrac{69}{26}\le-\dfrac{69}{26}\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow x-\dfrac{1}{6}=0\Leftrightarrow x=\dfrac{1}{6}\)
Vậy Max A là : \(\dfrac{-69}{26}\Leftrightarrow x=\dfrac{1}{6}\)
\(B=-2x^2-x+5\)
\(=-2\left(x^2-\dfrac{1}{2}x-\dfrac{5}{2}\right)\)
\(=-2\left(x^2-2x.\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{41}{16}\right)\)
\(=-2\left[\left(x-\dfrac{1}{4}\right)^2-\dfrac{41}{16}\right]\)
\(=-2\left(x-\dfrac{1}{4}\right)^2+\dfrac{41}{8}\le\dfrac{41}{8}\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow x-\dfrac{1}{4}=0\Leftrightarrow x=\dfrac{1}{4}\)
Vậy Max B là : \(\dfrac{41}{8}\Leftrightarrow x=\dfrac{1}{4}\)
\(C=-\left(x+1\right)^2-\left(2x-3\right)^2\)
\(=-x^2-2x-1-4x^2+12x-9\)
\(=-5x^2+10x-10\)
\(=-5\left(x^2-2x+1+1\right)\)
\(=-5\left[\left(x-1\right)^2+1\right]\)
\(=-5\left(x-1\right)^2-5\le-5\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy Max C là : \(-5\Leftrightarrow x=1\)
\(E=2-5x^2-y^2-4xy+2x\)
\(=-\left(4x^2+4xy+y^2\right)-\left(x^2-2x+1\right)+3\)
\(=-\left(2x+y\right)^2-\left(x-1\right)^2+3\le3\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2x+y=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2x\\x=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=1\end{matrix}\right.\)
Vậy Max E là : \(3\Leftrightarrow x=1;y=-2\)