
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Ta thấy: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)
\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)
Dấu \("="\) xảy ra khi: \(\left|\dfrac{2}{5}-x\right|=0\Leftrightarrow\dfrac{2}{5}-x=0\Leftrightarrow x=\dfrac{2}{5}\)
Vậy \(Min_Q=\dfrac{9}{2}\) khi \(x=\dfrac{2}{5}\).
\(---\)
b) Ta thấy: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)
\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\forall x\)
Dấu \("="\) xảy ra khi: \(\left|x+\dfrac{2}{3}\right|=0\Leftrightarrow x+\dfrac{2}{3}=0\Leftrightarrow x=-\dfrac{2}{3}\)
Vậy \(Min_M=-\dfrac{3}{5}\) khi \(x=-\dfrac{2}{3}\).
\(---\)
c) Ta thấy: \(\left|\dfrac{7}{4}-x\right|\ge0\forall x\)
\(\Rightarrow-\left|\dfrac{7}{4}-x\right|\le0\forall x\)
\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\forall x\)
Dấu \("="\) xảy ra khi: \(\left|\dfrac{7}{4}-x\right|=0\Leftrightarrow\dfrac{7}{4}-x=0\Leftrightarrow x=\dfrac{7}{4}\)
Vậy \(Max_N=-8\) khi \(x=\dfrac{7}{4}\).
a) Ta có: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)
\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)
Dấu "=" xảy ra khi:
\(\dfrac{2}{5}-x=0\)
\(\Rightarrow x=\dfrac{2}{5}\)
Vậy: ...
b) Ta có: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)
\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\)
Dấu "=" xảy ra:
\(x+\dfrac{2}{3}=0\)
\(\Rightarrow x=-\dfrac{2}{3}\)
Vậy: ...
c) Ta có: \(-\left|\dfrac{7}{4}-x\right|\le0\forall x\)
\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\)
Dấu "=" xảy ra:
\(\dfrac{7}{4}-x=0\)
\(\Rightarrow x=\dfrac{7}{4}\)
Vậy: ...

Lời giải:
$|2x+5|\geq 0$ theo tính chất trị tuyệt đối
$\Rightarrow -|2x+5|\leq 0$
$\Rightarrow M=-|2x+5|+7\leq 7$
Vậy gtln của $M$ là $7$. Giá trị này đạt tại $2x+5=0\Leftrightarrow x=\frac{-5}{2}$
--------------------------------
$|x+2|\geq 0$ theo tính chất trị tuyệt đối
$\Rightarrow N=4-3|x+2|\leq 4$
vậy gtln của $N$ là $4$ khi $x=-2$
-----------
$|x+9|\geq 0$ theo tính chất trị tuyệt đối
$\Rightarrow |x+9|+2\geq 2$
$\Rightarrow R=\frac{18}{|x+9|+2}\leq \frac{18}{2}=9$
Vậy gtln của $R$ là $9$ khi $x=-9$


a) vì | \(\frac{5}{3}-x\)| \(\ge\)0 \(\forall\)x
x không tính được thì phải. sai đề rồi
b) | x - \(\frac{1}{10}\)| \(\ge\)0 \(\forall\)x
\(\Rightarrow\)9 - | x - \(\frac{1}{10}\)| \(\le\)9
\(\Rightarrow\)Qmax \(\Leftrightarrow\)Q = 9 \(\Rightarrow\)x = \(\frac{1}{10}\)

a)Vì \(|x-2|\ge0;\forall x\)
\(\Rightarrow|x-2|+5\ge0+5;\forall x\)
Hay \(A\ge5;\forall x\)
Dấu"="xảy ra \(\Leftrightarrow|x-2|=0\)
\(\Leftrightarrow x=2\)
Vậy \(A_{min}=5\)\(\Leftrightarrow x=2\)
b) Vì \(-|x+4|\le0;\forall x\)
\(\Rightarrow12-|x+4|\le12;\forall x\)
Hay \(B\le12;\forall x\)
Dấu"=" xayra \(\Leftrightarrow|x+4|=0\)
\(\Leftrightarrow x=-4\)
Vậy MAX \(B=12\)\(\Leftrightarrow x=-4\)
a, Ta có :
\(\left|x-2\right|\ge0\forall x\)
\(\Rightarrow\left|x-2\right|+5\ge5\forall x\)
Mà \(A=\left|x-2\right|+5\)
\(\Rightarrow A\ge5\forall x\)
\(\Rightarrow MinA=5\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy \(MinA=5\Leftrightarrow x=2\)
Ta có : \(\left|x-\frac{4}{7}\right|\) \(\ge0\forall x\in R\)
=> \(-\left|x-\frac{4}{7}\right|\)\(\le0\forall x\in R\)
=> \(-\left|x-\frac{4}{7}\right|+\frac{5}{9}\le\frac{5}{9}\forall x\in R\)
Vậy GTLN của B là : \(\frac{5}{9}\) tại x = \(\frac{4}{7}\)