Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x+1}{2}+\dfrac{x+1}{3}+\dfrac{x+1}{4}=\dfrac{x+1}{5}+\dfrac{x+1}{6}\)
\(\Leftrightarrow\dfrac{x+1}{2}+\dfrac{x+1}{3}+\dfrac{x+1}{4}-\dfrac{x+1}{5}-\dfrac{x+1}{6}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}\right)=0\)
Mà \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}\ne0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy ..
\(\dfrac{x+1}{2}+\dfrac{x+1}{3}+\dfrac{x+1}{4}=\dfrac{x+1}{5}+\dfrac{x+1}{6}\)
=> \(\dfrac{x+1}{2}+\dfrac{x+1}{3}+\dfrac{x+1}{4}-\dfrac{x+1}{5}-\dfrac{x+1}{6}\)= 0
(x + 1).(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}\)) = 0
Ta thấy \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}\) > 0
=> x + 1 = 0
x = 0 - 1
x = -1
Giải:
Do \(a\in Z^+\Rightarrow5^b=a^3+3a^2+5>a+3=5^c\)
\(\Rightarrow5^b>5^c\Leftrightarrow b>c\Leftrightarrow5^b⋮5^c\)
\(\Rightarrow\left(a^3+3a^2+5\right)⋮\left(a+3\right)\)
\(\Rightarrow a^2\left(a+3\right)+5⋮\left(a+3\right)\)
Mà \(a^2\left(a+3\right)⋮\left(a+3\right)\) \([\)do \(\left(a+3\right)⋮\left(a+3\right)\)\(]\)
\(\Leftrightarrow5⋮a+3\Rightarrow a+3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\left(1\right)\)
Do \(a\in Z^+\Leftrightarrow a+3\ge4\left(2\right)\)
Kết hợp \(\left(1\right)\) và \(\left(2\right)\) ta có:
\(a+3=5\Rightarrow a=5-3=2\)
Thay \(a=2\) vào đẳng thức ta được:
\(2^3+3.2^2+5=5^5\Leftrightarrow25=5^b\Leftrightarrow b=2\)
\(2+3=5^c\Leftrightarrow5=5^c\Leftrightarrow c=1\)
Vậy \(\left(a,b,c\right)=\left(2;2;1\right)\)
2. GTLN
có A= x - |x|
Xét x >= 0 thì A= x - x = 0 (1)
Xét x < 0 thì A=x - (-x) = 2x < 0 (2)
Từ (1) và (2) => A =< 0
Vậy GTLN của A bằng 0 khi x >= 0
Bài1:
\(C=x^2+3\text{|}y-2\text{|}-1\)
Với mọi x;ythì \(x^2>=0;3\text{|}y-2\text{|}>=0\)
=>\(x^2+3\text{|}y-2\text{|}>=0\)
Hay C>=0 với mọi x;y
Để C=0 thì \(x^2=0\) và \(\text{|}y-2\text{|}=0\)
=>\(x=0vày-2=0\)
=>\(x=0và.y=2\)
Vậy....
a) Gọi \(A=1-x^2\)
Ta có: \(x^2\ge0\Rightarrow-x^2\le0\Rightarrow A=1-x^2\le1\)
Dấu " = " khi \(x^2=0\Rightarrow x=0\)
Vậy \(MAX_A=1\) khi x = 0
b) Đặt \(B=-3y^2\)
Ta có: \(3y^2\ge0\Rightarrow-3y^2\le0\)
Dấu " = " khi \(-3y^2=0\Rightarrow y=0\)
Vậy \(MAX_B=0\) khi y = 0
c) Đặt \(C=10-\left(2x-1\right)^2\)
Ta có: \(\left(2x-1\right)^2\ge0\)
\(\Rightarrow-\left(2x-1\right)^2\le0\)
\(\Rightarrow10-\left(2x-1\right)^2\le10\)
Dấu " = " khi \(\left(2x-1\right)^2=0\Rightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)
Vậy \(MAX_C=10\) khi \(x=\frac{1}{2}\)
Giải:
a) \(-1313x^2y.2xy^3\)
\(=\left(-1313.2\right)\left(x^2.x\right)\left(y.y^3\right)\)
\(=-2626x^3y^4\)
Bậc của đơn thức là: \(3+4=7\)
b) \(1414x^3y.\left(-2x^3y^5\right)\)
\(=\left[1414.\left(-2\right)\right]\left(x^3.x^3\right)\left(y.y^5\right)\)
\(=-2828x^6y^6\)
Bậc của đơn thức là: \(6+6=12\).
Chúc bạn học tốt!!!
a) -x2y. 2xy3 = -2x3y4. Đơn thức có bậc là 7
b) x3y. (-2x3y5) = -2x6y6. Đơn thức có bậc là 12
>> Mình không chép lại đề bài nhé ! <<
Cách 1 :
\(A=\left(\dfrac{36-4+3}{6}\right)-\left(\dfrac{30+10-9}{6}\right)-\left(\dfrac{18-14+15}{6}\right)=\dfrac{35}{6}-\dfrac{31}{6}-\dfrac{19}{6}=-\dfrac{15}{6}=-\dfrac{5}{2}\)
Cách 2 :
\(A=6-\dfrac{2}{3}+\dfrac{1}{2}-5+\dfrac{5}{3}-\dfrac{3}{2}-3-\dfrac{7}{3}+\dfrac{5}{2}\)
\(A=\left(6-5-3\right)-\left(\dfrac{2}{3}+\dfrac{5}{3}-\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}-\dfrac{5}{2}\right)\)
\(A=-2-0-\dfrac{1}{2}=-\dfrac{5}{2}\)
Cách 1 :
\(\left(6-\dfrac{2}{3}+\dfrac{1}{2}\right)-\left(5+\dfrac{5}{3}-\dfrac{3}{2}\right)-\left(3-\dfrac{7}{3}+\dfrac{5}{2}\right)\)
\(=\left(\dfrac{36}{6}-\dfrac{4}{6}+\dfrac{3}{6}\right)-\left(\dfrac{30}{6}+\dfrac{10}{6}-\dfrac{9}{6}\right)-\left(\dfrac{18}{6}-\dfrac{14}{6}+\dfrac{15}{6}\right)\)
\(=\dfrac{35}{6}-\dfrac{31}{6}-\dfrac{19}{6}\)
\(=-\dfrac{5}{2}\)
Cách 2 :
\(\left(6-\dfrac{2}{3}+\dfrac{1}{2}\right)-\left(5+\dfrac{5}{3}-\dfrac{3}{2}\right)-\left(3-\dfrac{7}{3}+\dfrac{5}{2}\right)\)
\(=6-\dfrac{2}{3}+\dfrac{1}{2}-5-\dfrac{5}{3}+\dfrac{3}{2}-3+\dfrac{7}{3}-\dfrac{5}{2}\)
\(=\left(6-5-3\right)+\left(\dfrac{-2}{3}+\dfrac{-5}{3}+\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{-5}{2}\right)\)
\(=\left(-2\right)+0+\dfrac{-1}{2}\)
\(=\dfrac{-5}{2}\)
Đặt \(A\) nhé mình thích \(A\) hơn
\(A=\dfrac{4}{5}+\dfrac{20}{\left|3x+5\right|+\left|4y+5\right|+8}\)
\(\left\{{}\begin{matrix}\left|3x+5\right|\ge0\forall x\in R\\\left|4y+5\right|\ge0\forall y\in R\end{matrix}\right.\) \(\Rightarrow\left|3x+5\right|+\left|4y+5\right|\ge0\)
\(\Rightarrow\left|3x+5\right|+\left|4y+5\right|+8\ge8\)
\(\Rightarrow\dfrac{20}{\left|3x+5\right|+\left|4y+5\right|+8}\le\dfrac{5}{2}\)
\(A=\dfrac{4}{5}+\dfrac{20}{\left|3x+5\right|+\left|4y+5\right|}\le\dfrac{23}{10}\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|3x+5\right|=0\\\left|4y+5\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{3}\\y=-\dfrac{5}{4}\end{matrix}\right.\)
cần lun nha mn ơi