Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Tìm GTLN:
a)-2x^2+4x-18
Ấn vào máy tính : mode 5 1
Rồi án hệ phương trình vào lặp 3 lần dấu =
kq = 1
b)-2x^2-12x+12
Ấn tương tự phần a
kq = -3
c)-2x^2+2xy-5y^2+4y+2x+1
Câu này bạn chuyển về hằng đẳng thức rồi xét nghiệm tìm GTLN nha
2.Tìm x,y:
a)x^2-2x+4y^2+4y+2
= x2 - 2x . 1+ 12 + ( 2y )2 + 2 . 2y . 1 + 12
= ( x - 1 ) 2 + ( 2y + 1 ) 2
+) ( x - 1 ) 2 = 0 +) ( 2y + 1 ) 2 = 0
x - 1 = 0 2y + 1 = 0
x = 1 y = \(-\frac{1}{2}\)
b)4x^2-8x+y+2y
Câu này cũng tương tự như câu trên chuyển về hằng đẳng thức nha
B = x2y2+2x2+24xy+16x+191 = [ (xy)^2 + 24xy + 144] + \(\left[\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.4\sqrt{2}+32\right]\)+15
= (xy+12)^2 +(\(\sqrt{2}x\)+\(4\sqrt{2}\))^2 + 15
( ở đây mik làm tắt) => Min B = 15 khi \(\sqrt{2}x+4\sqrt{2}=0=>x=-4\)và xy+12 = 0 => -4y = -12= > y=3
A= 2x^2+9y^2-6xy-6x-12y+2004
A = (x^2 -6xy +9y^2) + 4(x -3y) + x^2 - 10x + 2004
A = [(x -3y)^2 +4(x -3y) + 4] + (x^2 -10x +25) + 1975
A= (x -3y +2)^2 + (x -5)^2 + 1975
( mik rút mấy cái bước (x-3y+2)^2 = 0, bn làm thì nên thêm vào=> Min A = 1975 vs x= 5 và y = 7/3
D=-x^2+2xy-4y^2+2x+10y-8
D = (-x^2 - y^2 - 1 + 2xy + 2x - 2y) + (-3y^2 + 12y - 12) + 5
D = -(x^2+y^2+1 - 2xy - 2x + 2y) - 3(y^2 - 4y + 4) + 5
D= - (x - y - 1)^2 - 3(y - 2)^2 +5
=> Max D = 5 khi x= 3 và y=2
\(1.\)
\(a;A=-2x^2+4x-18\)
\(A=-2\left(x^2-4x+18\right)\)
\(A=-2\left(x^2-2.x.2+4+14\right)\)
\(A=-2\left(x-2\right)^2-14\le-14\)
Dấu = xảy ra khi : \(x-2=0\)
\(\Rightarrow x=2\)
Vậy Amax =-14 tại x = 2
Các câu còn lại lm tương tự........
\(a-2x^2+4x-18\)
=-[(2x2-2x.2+4)+14]
=-[(2x-2)2+14]
=-(2x-2)2-14
Vì -(2x-2)2 bé hơn hoặc bằng 0 với mọi x nên -(2x-2)2-14 bé hơn hoặc bằng -14
Dấu "=" xảy ra khi x=1
Vậy GTLN là -14 tại x=1
Mấy bài khác tương tự nha bạn. Áp dụng hằng đẳng thức và trình bày như thế
bài 2 xem lại cách ra đề nha bạn
Lời giải:
Những bài này sử dụng những hằng đẳng thức đáng nhớ.
Vì $x=-2$ nên $x+2=0$. Ta có:
\(A=(2x-3)^2-(x-3)^3+(4x+1)[(4x)^2-4x.1+1^2]\)
\(=(2x-3)^2-(x-3)^3+(4x)^3+1^3\)
\(=[2(x+2)-7]^2-(x+2-5)^3+8x^3+1\)
\(=(-7)^2-(-5)^3+8.(-2)^3+1=111\)
--------------------
\(B=(3x-y)^3-[x^3+(2y)^3]+(x+3)^2\)
\(=(3.1-2)^3-(1^3+8.2^3)+(1+3)^2=-48\)
----------------
Vì $x=\frac{1}{2}; y=\frac{-1}{2}\Rightarrow x+y=0$
\(C=(x-5y)^2+(2x-3y)^3-(x-y)^3-[(2x)^3+(3y)^3]\)
\(=(x+y-6y)^2+[2(x+y)-5y]^3-(x+y-2y)^3-[8(x^3+y^3)+19y^3]\)
\(=(-6y)^2+(-5y)^3-(-2y)^3-19y^3\)
\(=36y^2-136y^3=36.(\frac{-1}{2})^2-136(\frac{-1}{2})^3=26\)
1a) Ta có: -2x2 + 4x - 18 = -2(x2 - 2x + 1) - 16 = -2(x - 1)2 - 16
Ta luôn có: (x - 1)2 \(\ge\)0 \(\forall\)x --> -2(x - 1)2 \(\le\)0 \(\forall\)x
=> -2(x - 1)2 - 16 \(\le\)-16 \(\forall\)x
Dấu "=" xảy ra khi: x - 1 = 0 <=> x = 1
Vậy Max của -2x2 + 4x - 18 = -16 tại x = 1
b) Ta có: -2x2 -12x + 12 = -2(x2 + 6x + 9) + 30 = -2(x + 3)2 + 30
Ta luôn có: -2(x + 3)2 \(\le\)0 \(\forall\)x
=> -2(x + 3)2 + 30 \(\le\)30 \(\forall\)x
Dấu "=" xảy ra khi: x + 3 = 0 <=> x = -3
Vậy Max của -2x2 - 12x + 12 = 30 tại x = -3
3.
a)\(x^2+15x-25=x^2+15x+56,25-81,25\)
\(=\left(x+7,5\right)^2-81,25\ge-81,25\forall x\)
Dấu "=" xảy ra<=>\(\left(x+7,5\right)^2=0\Leftrightarrow x=-7,5\)
Vậy.....
b) \(3x^2-6x-21=3\left(x^2-2x-7\right)\)
\(=3\left[\left(x-1\right)^2-8\right]=3\left(x-1\right)^2-24\ge-24\forall x\)
Dấu "=" xảy ra<=>\(3\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy.....
c)\(x^2-6x+y^2+2y+36=x^2-6x+9+y^2+2y+1+26\)
\(=\left(x-3\right)^2+\left(y+1\right)^2+26\ge26\forall x;y\)
Dấu '=" xảy ra<=> \(\left(x-3\right)^2=0\Leftrightarrow x=3\) và \(\left(y+1\right)^2=0\Leftrightarrow y=-1\)
Vậy......
Câu 1:
\(x\left(x-2\right)\left(x+2\right)-\left(x+2\right)\left(x^2-2x+4\right)=4\)
\(\Leftrightarrow x\left(x^2-4\right)-\left(x^3+8\right)=4\)
\(\Leftrightarrow x^3-4x-x^3-8=4\)
\(\Leftrightarrow-4x-8=4\)
\(\Leftrightarrow-4x=12\)
\(\Leftrightarrow x=-3\)
Vậy \(x=-3\)
bài này dài lăm mk làm giúp 1 câu
A = (x -y)2 + (x+1)2 + (y-1)2 + 1
vậy GTNN = 1
(bn phân h 2x2 = x2 + x2
2y2 = y2+ y2 và 3 =1+1+1
là hiểu cách mk làm , còn nếu k hiểu ra đưa thầy giáo ,thầy sẽ gọi mk là thiên tài)
bạn đó giải rồi nhung nếu cần mình giải kỹ thì nhắn tin mình nha
\(B=2-\left(2x^2+y^2+2xy-4x-2y\right)\)
\(B=2-\left[\left(x^2+y^2+2xy-2x-2y+1\right)+\left(x^2-2x+1\right)\right]\)
\(B=4-\left(x-1\right)^2-\left(x+y-1\right)^2\le0\)
GTLN B =4 khi x= 1 ; y =0
\(C=\sqrt{3}-\left(16x^2-8x\right)=\sqrt{3}+1-\left(4x-1\right)^2\le\sqrt{3}+1\)
ki x =1/4