K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2017

Ta có:

2x + xy = 4

<=> 2x2 + x2 y = 4x

<=> A = - 2x2 + 4x = 2 - (2x2 - 4x + 2) = 2 - 2(x - 1)2 \(\le\)2

Vậy GTLN là 2 đạt được khi x = 1

4 tháng 2 2017

Quên ghi y = 2

29 tháng 12 2016

Mình mới học lớp 6

Nên không biết nha

Chúc các bạn học giỏi

29 tháng 12 2016

Mình cũng học lớp 6 nè

AH
Akai Haruma
Giáo viên
2 tháng 3 2017

Lời giải:

Từ \(2x+xy=4\rightarrow y=\frac{4}{x}-2\) ( hiển nhiên \(x\neq 0\) )

Do đó mà

\(A=x^2y=x^2\left (\frac{4}{x}-2\right)=-2x^2+4x=-2(x^2-2x+1)+2\)

\(\Leftrightarrow A=-2(x-1)^2+2\leq 2\) do \(-(x-1)^2\leq 0\forall x\in\mathbb{R}\)

Vậy \(A_{\max}=2\Leftrightarrow (x,y)=(1,2)\)

19 tháng 4 2017

Bên học24 mình đã xài \(\Delta\) vậy bên này mình sẽ xài HĐT kiểu Cosi như ý bn :))

Áp dụng BĐT \(xy\le\frac{x^2+y^2}{2}\) ta có:

\(x^2+y^2=4+xy\le4+\frac{x^2+y^2}{2}\)

\(\Rightarrow A\le4+\frac{A}{2}\Rightarrow A\le8\)

Đẳng thức xảy ra khi \(x=y=\pm2\)

*)Nếu \(xy\ge0\Rightarrow A\ge4\)

*)Nếu \(xy< 0\). WLOG \(x>0;y< 0\)\(y\rightarrow-z\left(z>0\right)\)

Have \(\frac{A}{4}=\frac{x^2+y^2}{4}=\frac{x^2+y^2}{x^2+y^2-xy}\)

\(=1+\frac{xy}{x^2+y^2+xy}=1-\frac{zx}{x^2+z^2+xz}\)

Áp dụng BĐT AM-GM ta có: 

\(\hept{\begin{cases}x^2+z^2\ge2xz\\x^2+z^2+xz\ge3xz\end{cases}}\)\(\Rightarrow\frac{xz}{x^2+z^2+zx}\le\frac{1}{3}\)

\(\Rightarrow\frac{A}{4}=1-\frac{zx}{x^2+z^2+xz}\ge1-\frac{1}{3}=\frac{2}{3}\Rightarrow A\ge\frac{8}{3}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}x=\frac{2}{\sqrt{3}}\\y=-\frac{2}{\sqrt{3}}\end{cases}}\) hoặc \(\hept{\begin{cases}x=-\frac{2}{\sqrt{3}}\\y=\frac{2}{\sqrt{3}}\end{cases}}\)

5 tháng 1 2018

-M = x^2+y^2-xy-2x-2y

-4M = 4x^2+4y^2-4xy-8x-8y

      = [ (4x^2-4xy+y^2) - 2.(2x-y).2 + 4 ] + (3y^2-12y+12)-16

      = [ (2x-y)^2 - 2.(2x-y).2 + 4 ] + 3.(y^2-4y+4) - 16

      = (2x-y-2)^2 + 3.(y-2)^2 - 16 >= -16 => M < = 4

Dấu "=" xảy ra <=> 2x-y-2 = 0 và y-2 = 0 <=> x = y = 2

Vậy ............

Tk mk nha

12 tháng 3 2017

Sử dụng Bdt thức   \(ab\le\left(\frac{a+b}{2}\right)^2\)  với  \(a,b>0\).

Tự chứng minh

\(------------------\)

Áp dụng bđt trên, ta có:

\(A=x^2y=\frac{1}{2}.2x.xy\le\frac{1}{2}\left(\frac{2x+xy}{2}\right)^2=\frac{1}{8}\left(2x+xy\right)^2=\frac{1}{8}.4^2=2\)

Dấu  \("="\)  xảy ra khi và chỉ khi  \(\hept{\begin{cases}2x=xy\\2x+xy=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)  

Kết luận: .....

2 tháng 2 2016

câu a) rút x theo y thế vào A rồi áp dụng HĐT

b)rút xy thế vào B 

c)HĐT

d)rút x theo y thé vào C

rồi dùng BĐT cô-si

e)BĐT chưa dấu giá trị tuyệt đối

 

23 tháng 4 2018

theo minh de ma

23 tháng 4 2018

đúng rồi dễ mà