Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{5x^2+4x-1}{x^2}=\frac{9x^2-\left(4x^2-4x+1\right)}{x^2}=9-\frac{\left(2x-1\right)^2}{x^2}\le9\)
Dấu \(=\)khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\).
\(B=\frac{x^2}{x^2+x+1}=\frac{3x^2}{3x^2+3x+3}=\frac{4x^2+4x+4-\left(x^2+4x+4\right)}{3x^2+3x+3}=\frac{4}{3}-\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\le\frac{4}{3}\)
Dấu \(=\)khi \(x+2=0\Leftrightarrow x=-2\).
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
\(A=4-x^2+3\)
\(=-x^2+7\le7\)
Khi x=0
\(C=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)
Đặt \(t=x^2+5x+4\) thì
\(=t\left(t+2\right)=t^2+2t+1-1\)
\(=\left(t+1\right)^2-1\ge-1\)
À MÌNH TRẢ LỜI NÈ (NHÁC SUY NGHĨ) TA CÓ X^4+Y^2 LỚN HƠN HOẶC BẰNG 2X^2Y VÀ X^2Y^4 LỚN HƠN HOẶC BẰNG 2XY^2 NÊN KHI ĐỔI THÀNH PHÂN SỐ SẼ LÀ X/X^4+Y^2<HOẶC = X/2X^2Y VÀ X/X^2+Y^4< HOẶC BẰNG X/2XY^2
MÀ XY=1 NÊN: X/2X^2Y=X/2X=1/2
Y/2XY^2=Y/2Y=1/2
NÊN X/X^4+Y^2 +Y/Y^4+X^2 < HOẶC = 1/2+1/2=1
VẬY GTLN CỦA A LÀ 1 KHI X=Y=1
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
ĐK tồn tại A với mọi x
A=x2−x+1x2+x+1=x2+x+1−2xx2+x+1=1+−2xx2+x+1=1+B (*)
Thay vì tìm GTNN & LN của B ta đi tìm GTNN,LN của B
B=−2xx2+x+1
Tìm Max2−B=2−−2xx2+x+1=2x2+2x+2+2xx2+x+1=2(x2+2x+1)x2+x+1=2(x+1)2(x+12)2+34≥0
=>2−B≥0⇒B≤2⇒A≤2+1=3đẳng thức khi Tim Min
B+23=−2xx2+x+1+23⇔−6x+2x2+2x+23(x2+x+1)=2(x2−2x+1)3(x2+x+1)=2(x−1)23[(x+12)2+34]≥0
B+23≥0⇒B≥−23⇒A≥1−23=13 đẳng thức khi x=-1
Kết luận:
GTNN A=1/3 khi x=1
GTLN A=3 khi x=-1
P/S: Sai thoy nha
Áp dụng BĐT:\(a^2+b^2\ge2ab\)(dấu "=" xảy ra khi a=b) với a=x^2,b=1 có:
\(x^4+1\ge2x^2\Leftrightarrow x^{\text{4}}+x^2+1\ge3x^2\)
\(\Leftrightarrow\frac{x^2}{x^{\text{4}}+x^2+1}\le\frac{x^2}{3x^2}=\frac{1}{3}\)
Dấu "=" xảy ra khi \(x^2=1\Leftrightarrow x=1\)
Vậy maxA=1/3 khi x=1