Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x-1\right)^2+3\ge3\Rightarrow A=\frac{5}{\left(2x-1\right)^2+3}\le\frac{5}{3}\)
\(\text{Dấu = xảy ra khi }2x-1=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
\(\text{Vậy Max}A=\frac{5}{3}\Leftrightarrow x=\frac{1}{2}\)
- GIẢI :
Ta có : \(\left(2x-1\right)^2\ge0\)
\(\Rightarrow(2x-1)^2+3\ge3\)
\(\Rightarrow\frac{1}{\left(2x-1\right)^2+3}\le\frac{1}{3}\)
\(\Rightarrow\frac{5}{\left(2x-1\right)^2+3}\le\frac{5}{3}\)
\(\Rightarrow\text{A}_{max}=\frac{5}{3}\).
Dấu "=" xảy ra khi : \(2x-1=0\Leftrightarrow x=\frac{1}{2}\).
Vậy \(\text{A}_{max}=\frac{5}{3}\) khi \(x=\frac{1}{2}\).
2/\(ĐKXĐ:x\ne-1\)
\(Q=\frac{2x^2+2}{\left(x+1\right)^2}=\frac{2\left(x+1\right)^2-4\left(x+1\right)+4}{\left(x+1\right)^2}\)
\(=2-\frac{4}{x+1}+\frac{4}{\left(x+1\right)^2}\)
Đặt \(\frac{2}{x+1}=t\)
\(\Rightarrow Q=t^2-2t+2=\left(t-1\right)^2+1\ge1\forall t\)
\(\Rightarrow minQ=1\Leftrightarrow t=1\)
\(\Leftrightarrow\frac{2}{x+1}=1\)
\(\Leftrightarrow x=1\left(tmđkxđ\right)\)
Ta có: \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{2^2}{2}=2\)
=> \(A\le\frac{2019}{2.2+2016}=\frac{2019}{2020}\)
Dấu "=" xảy ra <=> a = b = 1
hmm... Nên cho thêm đề là x nguyên
\(\left(+\right)\left|x\right|=x\Leftrightarrow x>0\left(x\ne0\right)\)
\(\Rightarrow C=\frac{x+2}{x}=1+\frac{2}{x}\)
C lớn nhất \(\Leftrightarrow1+\frac{2}{x}\)lớn nhất
\(\Leftrightarrow\frac{2}{x}\) nhỏ nhất \(\Leftrightarrow x=1\)Vì ( x > 0 )
\(\Leftrightarrow maxC=1+\frac{2}{1}=1+2=3\)
Dấu "=" xảy ra khi \(x=1\)
\(\left(+\right)\left|x\right|=-x\Leftrightarrow x< 0\)
\(\Rightarrow C=\frac{x+2}{-x}=-1+\frac{-2}{x}\)
C lớn nhất \(\Leftrightarrow-1+\frac{-2}{x}\)lớn nhất
\(\Leftrightarrow-\frac{2}{x}\) lớn nhất \(\Leftrightarrow x\)lớn nhất và x < 0
\(\Leftrightarrow x=-1\)
\(\Rightarrow maxC=-1+\frac{-2}{-1}=-1+2=1\)
Vậy GTLN của C = 3 tại x = 1
\(\frac{4x+1}{4x^2+2}=\frac{-\left(2x-1\right)^2}{4x^2+2}+1\le1\)
Dấu bằng xảy ra
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy................
- Đặt \(A=4x^2+4x+5\)
- Ta có: \(A=4x^2+4x+5\)
\(\Leftrightarrow A=\left(4x^2+4x+1\right)+4\)
\(\Leftrightarrow A=\left(2x+1\right)^2+4\)
- Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\)\(\left(2x+1\right)^2+4\ge4\forall x\)
\(\Rightarrow A_{min}=4\)
- Dấu "=" xảy ra khi: \(2x+1=0\)\(\Leftrightarrow\)\(2x=-1\)\(\Leftrightarrow\)\(x=-\frac{1}{2}\left(TM\right)\)
Vậy \(A_{min}=4\)\(\Leftrightarrow\)\(x=-\frac{1}{2}\)
\(B=\frac{4-4x^2+4x}{5}=\frac{-\left(4x^2-4x-4\right)}{5}\)
\(=\frac{-\left(4x^2-4x+1\right)+5}{5}\)
\(=\frac{-\left(2x-1\right)^2+5}{5}\)
Ta có: \(-\left(2x-1\right)^2\le0\)
\(\Rightarrow-\left(2x-1\right)^2+5\le5\)
\(\Rightarrow\frac{-\left(2x-1\right)^2+5}{5}\ge1\)
Vậy \(B_{min}=1\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)