K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2019

Áp dụng BĐT:\(a^2+b^2\ge2ab\)(dấu "=" xảy ra khi a=b) với a=x^2,b=1 có:

\(x^4+1\ge2x^2\Leftrightarrow x^{\text{4}}+x^2+1\ge3x^2\)

\(\Leftrightarrow\frac{x^2}{x^{\text{4}}+x^2+1}\le\frac{x^2}{3x^2}=\frac{1}{3}\)

Dấu "=" xảy ra khi \(x^2=1\Leftrightarrow x=1\)

Vậy maxA=1/3 khi x=1

DD
26 tháng 6 2021

\(A=\frac{5x^2+4x-1}{x^2}=\frac{9x^2-\left(4x^2-4x+1\right)}{x^2}=9-\frac{\left(2x-1\right)^2}{x^2}\le9\)

Dấu \(=\)khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\).

\(B=\frac{x^2}{x^2+x+1}=\frac{3x^2}{3x^2+3x+3}=\frac{4x^2+4x+4-\left(x^2+4x+4\right)}{3x^2+3x+3}=\frac{4}{3}-\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\le\frac{4}{3}\)

Dấu \(=\)khi \(x+2=0\Leftrightarrow x=-2\).

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

16 tháng 8 2017

\(A=4-x^2+3\)

\(=-x^2+7\le7\)

Khi x=0

\(C=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)

Đặt \(t=x^2+5x+4\) thì

\(=t\left(t+2\right)=t^2+2t+1-1\)

\(=\left(t+1\right)^2-1\ge-1\)

16 tháng 8 2017

Khi x=0

Đặt  thì

8 tháng 10 2016

À MÌNH TRẢ LỜI NÈ (NHÁC SUY NGHĨ) TA CÓ X^4+Y^2 LỚN HƠN HOẶC BẰNG 2X^2Y VÀ X^2Y^4 LỚN HƠN HOẶC BẰNG 2XY^2 NÊN KHI ĐỔI THÀNH PHÂN SỐ SẼ LÀ X/X^4+Y^2<HOẶC = X/2X^2Y VÀ X/X^2+Y^4< HOẶC BẰNG X/2XY^2

MÀ XY=1 NÊN: X/2X^2Y=X/2X=1/2

Y/2XY^2=Y/2Y=1/2

NÊN X/X^4+Y^2 +Y/Y^4+X^2 < HOẶC = 1/2+1/2=1

VẬY GTLN CỦA A LÀ 1 KHI X=Y=1
 

15 tháng 4 2019

ĐK tồn tại A với mọi x

A=x2−x+1x2+x+1=x2+x+1−2xx2+x+1=1+−2xx2+x+1=1+B (*)

Thay vì tìm GTNN & LN của B ta đi tìm GTNN,LN của B

B=−2xx2+x+1

Tìm Max2−B=2−−2xx2+x+1=2x2+2x+2+2xx2+x+1=2(x2+2x+1)x2+x+1=2(x+1)2(x+12)2+34≥0

=>2−B≥0⇒B≤2⇒A≤2+1=3đẳng thức khi Tim Min

B+23=−2xx2+x+1+23⇔−6x+2x2+2x+23(x2+x+1)=2(x2−2x+1)3(x2+x+1)=2(x−1)23[(x+12)2+34]≥0

B+23≥0⇒B≥−23⇒A≥1−23=13 đẳng thức khi x=-1

Kết luận:

GTNN A=1/3 khi x=1

GTLN A=3 khi x=-1

P/S: Sai thoy nha

3 tháng 3 2020

\(A=\frac{4-x^2}{x^2+1}=\frac{-\left(x^2+1\right)+5}{x^2+1}\)

\(=-1+\frac{5}{x^2+1}\)

Ta có \(x^2\ge0\forall x\)

\(\Rightarrow x^2+1\ge1\)

\(\Rightarrow\frac{5}{x^2+1}\le5\)

\(\Rightarrow-1+\frac{5}{x^2+1}\le4\)

Dấu "=" xảy ra khi x = 0