![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2 :
a) \(P=x^2+y^2+xy+x+y\)
\(2P=2x^2+2y^2+2xy+2x+2y\)
\(2P=x^2+2xy+y^2+x^2+2x+1+y^2+2y+1-2\)
\(2P=\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2}{2}\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2}{2}-1\le-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y+1=0\end{cases}}\)
Mình nghĩ đề phải là tìm GTLN của \(P=x^2+y^2+xy+x-y\)hoặc đổi dấu x và y thì dấu "=" mới xảy ra đc
@ Phương ơi ! Cái dòng \(P=\)cuối ấy . Chỗ đấy là \(\ge-1\)em nhé!
![](https://rs.olm.vn/images/avt/0.png?1311)
M = -x2 - y2 + 4x - 2y + 5
<=> M = - x2 + 4x - 4 - y2 - 2y - 1 + 10
<=> M = -(x2 - 4x+ 4) - (y2 + 2y + 1) + 10
<=> M = -(x - 2)2 - (y + 1)2 + 10
Do: (x - 2)2 lớn hơn hoặc bằng 0 <=> -(x - 2)2 bé hơn hoặc bằng 0
(y + 1)2 lớn hơn hoặc bằng 0 <=> -(y + 1)2 bé hơn hoặc bằng 0
=> M bé hơn hoặc bằng 10
Dấu "=" xảy ra khi: -(x - 2)2 = 0 và -(y + 1)2 = 0
<=> x = 2 và y = -1
Vậy GTNN của M là 10 khi và chỉ khi x = 2 và y = -1
\(M=-\left(x^2-4x+16\right)-\left(y^2+2y+1\right)+20\)
\(=-\left(x-4\right)^2-\left(y+1\right)^2+20\le20\)
\(M_{max}=20\)dấu bằng sảy ra khi \(\hept{\begin{cases}x-4=0\\y+1=0\end{cases}}=\orbr{\begin{cases}x=4\\y=-1\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
a: \(C=a^2+b^2=\left(a+b\right)^2-2ab=23^2-2\cdot132=265\)
b: \(D=x^3+y^3+3xy\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\)
\(=1-3xy+3xy=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
x^2 -4x+5+y^2+2y
=(x^2-4x+4)+(y^2+2y +1)
=(x-2)^2+(y+1)^2
vì (x-2 )^2 >= 0
(y+1)^2>=0
=)) (x-2)^2 +(y+1)^2 >=0
dấu "=" xảy ra
<=>x-2 =0 =)x=2
và y+1=0 =)y=-1
vậy..........
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
1.Đặt \(A=x^2+y^2-3x+2y+3\)
\(=x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+y^2+2y+1+2\)
\(=\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{9}{4}+2\)
\(=\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{1}{4}\)
Vì \(\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0;\forall x\\\left(y+1\right)^2\ge0;\forall y\end{cases}}\)
\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2\ge0;\forall x,y\)
\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{1}{4}\ge0-\frac{1}{4};\forall x,y\)
Hay \(A\ge\frac{-1}{4};\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-1\end{cases}}\)
VẬY MIN A=\(\frac{-1}{4}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-1\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ns thật vs c tôi ms đọc đề bài thôi đã ko hiểu j rồi ns chi đến lm giúp c. Sr nhé
\(A=5-\left(x^2+2\right)^2-\left(y-1\right)^2\le5\)
Amax =5
A=-x2-4x-4-y2+2y-1+5
A=-(x+2)2-(y-1)2+5
A=-((x+2)2+(y-1)2)+5
MaxA=5