Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{2x^2+9}{x^2+4}=\frac{\left(2x^2+8\right)+1}{x^2+4}=\frac{2\left(x^2+4\right)+1}{x^2+4}=2+\frac{1}{x^2+4}\)
Ta thấy \(x^2\ge0\forall x\)
=> \(x^2+4\ge4\forall x\)
=> \(\frac{1}{x^2+4}\le\frac{1}{4}\forall x\)
=> \(A\le\frac{1}{4}+2=\frac{9}{4}\)
\(MaxA=\frac{9}{4}\Leftrightarrow x=0\)
Tìm GTNN.
Gọi biểu thức trên là A. Ta có; \(A=2x+3\Rightarrow A^2=\left(2x+3\right)^2=4x^2+12x+9\)
Đặt \(B=4x^2+12x+9\).Ta có:
\(B=4x^2+12x+9\)
\(=4\left(x^2+3x+\frac{9}{4}\right)=4\left(x+\frac{3}{2}\right)^2\ge0\) (do \(4\left(x+\frac{3}{2}\right)\ge0\forall x\))
Mà \(A^2=B\Rightarrow A=\sqrt{B}\ge\sqrt{0}=0\)
Vậy \(A_{min}=0\Leftrightarrow4\left(x+\frac{3}{2}\right)^2=0\Leftrightarrow x=-\frac{3}{2}\)
Tìm GTLN:tương tự
a, \(A=2x^2-8x-10=2\left(x^2-4x+4\right)-18=2\left(x-2\right)^2-18\ge-18\)
Dấu "=" xảy ra <=> x-2=0 <=> x=2
Vậy MinA = -18 khi x=2
b, \(B=x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Dấu "=" xảy ra <=> x-1/2=0 <=> x=1/2
Vậy MaxB = 1/4 khi x=1/2
a) \(A=2x^2-8x-10\)
\(=2\left(x^2-4x-5\right)\)
\(=2\left(x^2-2.x.2+2^2-2^2-5\right)\)
\(=2\left[\left(x-2\right)^2-9\right]\)
\(=2\left(x-2\right)^2-18\)
Vì \(2\left(x-2\right)^2\ge0\forall x\)
Nên \(2\left(x-2\right)^2\ge-18\)
Hay \(A\ge-18\)
Vậy gtnn của A là -18 khi \(2\left(x-2\right)^2=0\)
\(x-2=0\)
\(x=2\)
b) \(B=x-x^2\)
\(=-x^2-x\)
\(=-\left(x^2-x\right)\)
\(=-\text{[}x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\text{]}\)
\(=-\text{[}\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\text{]}\)
\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)
Vì \(-\left(x-\frac{1}{2}\right)^2\le0\forall x\)
Nên \(-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x
\)
Vậy gtln của B là \(\frac{1}{4}\)khi \(x-\frac{1}{2}=0\)
\(x=\frac{1}{2}\)
a,sửa x8 thành x2
\(A=5-8x-x^2=-\left(x^2+8x+16\right)+21=-\left(x+2\right)^2+21\le21\)
Dấu "=" xảy ra khi x+2=0 <=> x=-2
Vậy Amax = 21 khi x = -2
b,\(B=5-x^2+2x-4y^2-4y=-\left(x^2+2x+1\right)-\left(4y^2+4y+1\right)+7=-\left(x+1\right)^2-\left(2y+1\right)^2+7\le7\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+1=0\\2y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{-1}{2}\end{cases}}}\)
Vậy Bmax = 7 khi x=-1,y=-1/2
GTLN của K = \(-2x^2\) + 8x + 36
K = -2 ( \(x^2\) - 4x - 18 )
= -2 ( \(x^2\) - 4x + 4 - 22 )
= -2 [\(\left(x-2\right)^2\) - 22 ]
= -2 \(\left(x-2\right)^2\) + 44
Ta có \(\left(x-2\right)^2\) ≥ 0 ; với mọi x
⇒ \(-\left(x-2\right)^2\) ≤ 0 ; với mọi x
⇒ \(-2\left(x-2\right)^2\) ≤ 0 ; với mọi x
⇒ \(-2\left(x-2\right)^2+44\) ≤ 44 ; với mọi x
Vậy MaxK = 44 khi x - 2 = 0 ⇔ x = 2
A=-x^2-5x+8
=-(x^2+5x-8)
=-(x^2+5x+25/4-57/4)
=-(x+5/2)^2+57/4<=57/4
Dấu = xảy ra khi x=-5/2
a, N = 2 + 6/x^2-8x+22
Có : x^2-8x+22 = (x-4)^2 + 6 >= 6 => 6/x^2-8x+22 <= 6/6 = 1 => N <= 2+1=3
Dấu "=" xảy ra <=> x-4 = 0 <=> x=4
Vậy Max N =3 <=> x=4
k mk nha
Cảm ơn bạn đã giúp mink nhưng bạn làm kiểu thế mink ko hiểu. Mong bạn sửa lại !
hello bn tui
\(A=-2x^2+8x+13\)
\(A=-2\left(x^2-4x+4\right)+21\)
\(A=-2\left(x-2\right)^2+21\)
\(A=21-2\left(x-2^2\right)\le21\)
\(MAX\left(A\right)=21\Leftrightarrow x=2\)
#hoktot<3#