K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2021

Giải

Ta có: \(A=-2x^2+6x+9\left(x\inℝ\right)\)

\(\Rightarrow A=-2x^2+\left(-2\right).\left(-3x\right)+\left(-2\right).\left(-\frac{9}{2}\right)\)(Biến đổi tất cả các hạng tử sao cho có nhân tử chung là -2)

\(\Rightarrow A=-2\left(x^2-3x-\frac{9}{2}\right)\)(Rút nhân tử chung)

\(\Rightarrow A=-2\left[x^2-2.\frac{3}{2}x+\left(\frac{3}{2}\right)^2-\frac{27}{4}\right]\)(Tách 9/2 thành (3/2)^2 - 27/4. Dễ thấy có hằng đẳng thức)

\(\Rightarrow A=-2\left[\left(x-\frac{3}{2}\right)^2-\frac{27}{4}\right]\)

(Cho -27/4 ra ngoài, còn lại ta sử dụng hẳng đẳng thức \(A^2-2AB+B^2=\left(A-B\right)^2\))

Vì \(\left(x-\frac{3}{2}\right)^2\ge0\)với mọi x (bình phương của một số luôn lớn hơn hoặc bằng 0)

Nên \(\left(x-\frac{3}{2}\right)^2-\frac{27}{4}\ge-\frac{27}{4}\)

\(\Rightarrow-\left[\left(x-\frac{3}{2}\right)^2-\frac{27}{4}\right]\le\frac{27}{4}\)(Nhân thêm -1 cả hai vế thì dấu lớn hơn hoặc bằng phải đổi thành bé hơn hoặc bằng)

\(\Rightarrow-2\left[\left(x-\frac{3}{2}\right)^2-\frac{27}{4}\right]\le\frac{27}{2}\)(Nhân thêm 2 vào cả hai vế)

Dấu "=" xảy ra khi và chỉ khi \(\left(x-\frac{3}{2}\right)^2=0\)(Ở đây nhỏ hơn hoặc bằng thì khi bằng nó sẽ là giá trị lớn nhất)

\(\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)

Vậy giá trị lớn nhất của A là \(\frac{27}{2}\Leftrightarrow x=\frac{3}{2}\)

1 tháng 6 2019

Ta có: \(A=-x^2+2x+4=-\left(x^2-2x-4\right)=-\left(x^2-2x+1-5\right)=-\left(x-1\right)^2+5\le5\forall x\)

=> Max A = 5 tại x = 1

\(B=-2x^2+6x+3=-2\left(x^2-3x-\frac{3}{2}\right)=-2\left(x^2-3x+\frac{9}{4}-\frac{15}{4}\right)=-2\left(x-\frac{3}{2}\right)^2+\frac{15}{2}\)

\(B\le\frac{15}{2}\forall x\)

=> Max B = 15/2 tại x= 3/2

C làm tương tự nha

=.= hk tốt!!

12 tháng 7 2018

1/

a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)

Dấu "=" xảy ra khi x=1/2

Vậy Amin=4 khi x=1/2

b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)

Dấu "=" xảy ra khi x=-1

Vậy Bmin = -4 khi x=-1

2/

a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)

Dấu "=" xảy ra khi x=3

Vậy Amax = 19 khi x=3

b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)

Dấu "=" xảy ra khi x=5/4

Vậy Bmax = 31/8 khi x=5/4

10 tháng 9 2020

A1 = ... ( Cho mình hỏi cái A X kia là gì thế :)) )

Sửa thành 4x2 + 4x + 5 nhé '-'

A1 = 4x2 + 4x + 5

= ( 4x2 + 4x + 1 ) + 4

= ( 2x + 1 )2 + 4 ≥ 4 ∀ x

Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2

=> MinA1 = 4 <=> x = -1/2

A2 = 9x2 - 6x + 3

= ( 9x2 - 6x + 1 ) + 2

= ( 3x - 1 )2 + 2 ≥ 2 ∀ x

Đẳng thức xảy ra <=> 3x - 1 = 0 => x = 1/3

=> MinA2 = 2 <=> x = 1/3

A3 = x2 - 6x + 23

= ( x2 - 6x + 9 ) + 14

= ( x - 3 )2 + 14 ≥ 14 ∀ x

Đẳng thức xảy ra <=> x - 3 = 0 => x = 3

=> MinA3 = 14 <=> x = 3

A= 2x - x2

= -( x2 - 2x + 1 ) + 1

= -( x - 1 )2 + 1 ≤ 1 ∀ x

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

=> MaxA4 = 1 <=> x = 1

A5 = 4x - x2

= -( x2 - 4x + 4 ) + 4

= -( x - 2 )2 + 4 ≤ 4 ∀ x

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> MaxA5 = 4 <=> x = 2

2 tháng 9 2020

a) Ta có : \(A=x^2-x+3=\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2}\)

Vạy GTNN của \(A=\frac{11}{4}\) tại \(x=\frac{1}{2}\)

b) \(B=2x^2+10x-2\)

\(=2.\left(x^2+5x-1\right)\)

\(=2.\left[\left(x^2+2\cdot x\cdot\frac{5}{2}+\frac{25}{4}\right)-\frac{29}{4}\right]\)

\(=2.\left(x+\frac{5}{2}\right)^2-\frac{29}{2}\ge-\frac{29}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=-\frac{5}{2}\)

Vạy GTNN của \(B=-\frac{29}{2}\) tại \(x=-\frac{5}{2}\)

c) \(C=19-6x-9x^2\)

\(=-\left(9x^2+6x\right)+19\)

\(=-\left[\left(3x\right)^2+2.3x.1+1\right]+20\)

\(=-\left(3x+1\right)^2+20\le20\)

Dấu "=" xảy ra \(\Leftrightarrow x=-\frac{1}{3}\)

Vậy GTLN của \(C=20\) khi \(x=-\frac{1}{3}\)

2 tháng 9 2020

Bạn tham khảo tại linh này : Câu hỏi của Zero Two - Toán lớp 8 - Học toán với OnlineMath

2 tháng 9 2020

Đăng một lần thôi bạn :v Tụi mình thấy và làm cho bạn mà :))

A = x2 - x + 3

= ( x2 - x + 1/4 ) + 11/4

= ( x - 1/2 )2 + 11/4

( x - 1/2 )2 ≥ 0 ∀ x => ( x - 1/2 )2 + 11/4 ≥ 11/4

Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2

=> MinA = 11/4 <=> x = 1/2

B = 2x2 + 10x - 2

= 2( x2 + 5x + 25/4 ) - 29/2

= 2( x + 5/2 )2 - 29/2

2( x + 5/2 )2 ≥ 0 ∀ x => 2( x + 5/2 )2 - 29/2 ≥ -29/2

Đẳng thức xảy ra <=> x + 5/2 = 0 => x = -5/2

=> MinB = -29/2 <=> x = -5/2

C = 19 - 6x - 9x2

= -( 9x2 + 6x + 1 ) + 20

= -( 3x + 1 )2 + 20

-( 3x + 1 )2 ≤ 0 ∀ x => -( 3x + 1 )2 + 20 ≤ 20

Đẳng thức xảy ra <=> 3x + 1 = 0 => x = -1/3

=> MaxC = 20 <=> x = -1/3

2 tháng 9 2020

Bạn xem tại link này nhé : Câu hỏi của Zero Two - Toán lớp 8 - Học toán với OnlineMath