Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
B = - 3x(x + 3) - 7
= -3x2 - 9x - 7
= - 3(x2 + 2 . x . 3/2 + 9/4 - 9/4 + 7/3)
= -3[(x + 3/2)2 + 1/12]
(x + 3/2)2 lớn hơn hoặc bằng 0
(x + 3/2)2 + 1/12 lớn hơn hoặc bằng 1/12
- 3[(x + 3/2)2 + 1/12] nhỏ hơn hoặc bằng - 1/4
Vậy Max B = - 1/4 khi x = - 3/2.
Chúc bạn học tốt ^^
B=-3x(x+3)-7
=-3x2-9x-7
=-3(x2+3x+7/3)
=-3(x2+2*3/2x+9/4+1/12)
=-3(x+3/2)2-1/4
Với mọi x thuộc R, ta luôn có: (x+3/2)2>=0
suy ra: -3(x+3/2)2<=0
suy ra: -3(x+3/2)2-1/4<=0-1/4
suy ra: B<=-1/4
suy ra: GTNN của B bằng -1/4
khi x+3/2=0
suy ra x=-3/2
NẾU ĐÚNG CHO MK NHA
+ Áp dụng BĐT Cô - si :
\(\sqrt{3x-9}=\frac{3.\sqrt{3x-9}}{3}=\frac{\frac{\sqrt{9.\left(3x-9\right)}}{2}}{3}=\frac{x}{2}\)
\(\sqrt{7-x}=\sqrt{1.\left(7-x\right)}\le\frac{1+7-x}{2}=\frac{8-x}{2}\)
Cộng theo vế ta được :
\(\sqrt{3x-9}+\sqrt{7-x}\le\frac{x+8-x}{2}=4\)
Dấu " = " xảy ra \(\Leftrightarrow x=6\)
Chúc bạn học tốt !!!
Bài 2:
a: Ta có: \(x^2+4x+7\)
\(=x^2+4x+4+3\)
\(=\left(x+2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi x=-2
Ta có \(A=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{\left(3x^2+9x+7\right)+10}{3x^2+9x+7}=\)
\(=\frac{3x^2+9x+7}{3x^2+9x+7}+\frac{10}{3x^2+9x+7}\)
\(=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3\left(x+\frac{3}{2}\right)^2+\frac{1}{4}}\)
Từ đây suy ra A có GTLN là 41, khi \(x=-\frac{3}{2}\)
A= -4 - x^2 +6x
=-(x2-6x+9)+5
=-(x-3)2+5\(\le\)5
Dấu "=" xảy ra khi x=3
Vậy...............
B= 3x^2 -5x +7
\(=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)-\frac{59}{12}\)
\(=3\left(x-\frac{5}{6}\right)^2-\frac{59}{12}\ge\frac{-59}{12}\)
Dấu "=" xảy ra khi \(x=\frac{5}{6}\)
Vậy.................
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
\(=-\left(x^2+2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)+\dfrac{37}{4}=-\left(x+\dfrac{3}{2}\right)^2+\dfrac{37}{4}\le\dfrac{37}{4}\)
Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)