K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2018

a, \(A=x^2-6x+11\)

\(=x^2-2.3.x+9+2\)

\(=\left(x-3\right)^2+2\)

Ta có: \(\left(x-3\right)^2\ge0\Leftrightarrow\left(x-3\right)^2+2\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow x-3=0\)\(\Leftrightarrow x=3\)

Vậy \(MinA=3\Leftrightarrow x=3\)

b, \(B=2x^2+10x-1\)

\(=2\left(x^2+5x\right)-1\)

\(=2\left(x^2+2.\frac{5}{2}x+\frac{25}{4}\right)-\frac{21}{4}\)

\(=2\left(x+\frac{5}{2}\right)^2-\frac{21}{4}\)

Ta có: \(\left(x+\frac{5}{2}\right)^2\ge0\Leftrightarrow\left(x+\frac{5}{2}\right)^2-\frac{21}{4}\ge-\frac{21}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)

Vậy \(MinB=-\frac{21}{4}\Leftrightarrow x=-\frac{5}{2}\)

c, \(C=5x-x^2\)

\(=-x^2+5x\)

\(=-\left(x^2+2.\frac{5}{2}x+\frac{25}{4}\right)+\frac{25}{4}\)

\(=-\left(x+\frac{5}{2}\right)^2+\frac{25}{4}\)

Ta có: \(-\left(x+\frac{5}{2}\right)^2\le0\Leftrightarrow-\left(x+\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x=-\frac{5}{2}\)

Vậy \(MaxB=\frac{25}{4}\Leftrightarrow x=-\frac{5}{2}\)

10 tháng 7 2016

A = 0

B = 0, = 1/5

k nha

10 tháng 7 2016

\(A=2x^2+10x-1=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge-\frac{27}{2}\)

=> Min A \(=-\frac{27}{2}\Leftrightarrow x=-\frac{5}{2}\)

\(B=5x^2-x=5\left(x-\frac{1}{10}\right)^2-\frac{1}{20}\ge-\frac{1}{20}\)

=> Min B \(=-\frac{1}{20}\Leftrightarrow x=\frac{1}{10}\)

29 tháng 10 2017

áp dụng công thức này nha bạn:

\(\text{ax}^2+bx+c=a\left(x+\dfrac{b}{2a}\right)^2+\dfrac{4ac-b^2}{4a}\)

từ đó tự suy ra min vs max nha

24 tháng 10 2022

A=2x+10x - 1

A= 2 (x+ 5x -1/2)

A= 2 (x+ 2.x.5/2 + 5/22) - (1/2-5/22)

A= 2 (x+5/2)2  - 23/4

Vậy GTLN là 2 . (-23/4) = -23/2 khi x= -5/2 khiến (x+5/2)= 0

23 tháng 7 2017

GTNN nak !!!

\(B=x^2-4xy+5y^2+10x-22y+28\)

\(=\left(x^2-4xy+4y^2\right)+\left(10x-20y\right)+\left(y^2-2y+1\right)+27\)

\(=\left[\left(x-2y\right)^2+10\left(x-2y\right)+25\right]+\left(y^2-2y+1\right)+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\) có GTNN là 2

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)

Vậy \(B_{min}=2\) tại \(x=-3;y=1\)

21 tháng 9 2016

\(B=3x^2-6x+1=3x^2-6x+3-2=3\times\left(x^2-2x+1\right)-2=3\times\left(x-1\right)^2-2\)

\(3\times\left(x-1\right)^2\ge0\Rightarrow3\times\left(x-1\right)^2-2\ge-2\)

\(MinB=-2\Leftrightarrow x=1\)

\(A=-5x^2-4x+13=-5\times\left(x^2+\frac{4}{5}x-\frac{13}{5}\right)=-5\times\left(x^2+2\times x\times\frac{2}{5}+\frac{4}{25}-\frac{4}{25}-\frac{13}{5}\right)=-5\times\left[\left(x+\frac{2}{5}\right)^2-\frac{69}{25}\right]\)

\(\left(x+\frac{2}{5}\right)^2\ge0\Rightarrow\left(x+\frac{2}{5}\right)^2-\frac{69}{25}\ge-\frac{69}{25}\Rightarrow-5\times\left[\left(x+\frac{2}{5}\right)^2-\frac{69}{25}\right]\le\frac{69}{5}\)

\(M\text{ax}A=\frac{69}{5}\Leftrightarrow x=-\frac{2}{5}\)

\(B=-x^2-10x+8=-x^2-10x-25+33=33-\left(x+5\right)^2\)

\(\left(x+5\right)^2\ge0\Rightarrow33-\left(x+5\right)^2\le33\)

\(M\text{ax}B=33\Leftrightarrow x=-5\)

22 tháng 9 2016

Thanks

15 tháng 9 2017

\(C=x^2-10x+7\)

\(C=x^2-10x+25-18\)

\(C=\left(x-5\right)^2-18\ge-18\)

Dấu "=" xảy ra khi:

\(\left(x-5\right)^2=0\Rightarrow x=5\)

\(P=6x-x^2+2017\)

\(P=-x^2+6x+2017\)

\(P=-x^2+6x-9+2026\)

\(P=-\left(x^2-6x+9\right)+2026\)

\(P=-\left(x-3\right)^2+2026\le2026\)

Dấu "=" xảy ra khi:

\(-\left(x-3\right)^2=0\Rightarrow x=3\)

15 tháng 9 2017

\(C=x^2-10x+25-18\)

\(=\left(x-5\right)^2-18\ge-18\)

Dấu = xảy ra khi và chỉ khi \(\left(x-5\right)^2=0\Rightarrow x=5\) nên GTNN của C là -18 khi x = 5

\(P=-x^2+6x+2017\)

\(=-\left(x^2-6x+9\right)+2026\)

\(=-\left(x-3\right)^2+2026\le2026\)

Dấu = xảy ra khi \(-\left(x-3\right)^2=0\Rightarrow x=3\) nên giá trị lớn nhất của P là 2026 khi x = 3