K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2016

Vì \(\left|3x^2+1\right|\ge0\) nên GTNN của A=2 

\(\Leftrightarrow3x^2+1=0\Rightarrow3x^2=-1\Rightarrow x^2=-\frac{1}{3}\)

Vì thế không có x thỏa mãn

9 tháng 12 2016

ok c.on ban

8 tháng 5 2020

1) \(M=\frac{x^2+y^2+7}{x^2+y^2+5}=1+\frac{2}{x^2+y^2+5}\)

Ta có: \(x^2+y^2\ge0,\forall x;y\)

=> \(x^2+y^2+5\ge5\) với mọi x; y 

=> \(\frac{2}{x^2+y^2+5}\le\frac{2}{5}\)

=> \(M\le1+\frac{2}{5}=\frac{7}{5}\)

Dấu "=" xảy ra <=> x = y = 0 

Vậy max M = 7/5 đạt tại x = y = 0 

2) \(f\left(x-1\right)=x^2-3x+5=x^2-x-2x+2+3\)

\(=x\left(x-1\right)-2\left(x-1\right)+3=x\left(x-1\right)-\left(x-1\right)-\left(x-1\right)+3\)

\(=\left(x-1\right)\left(x-1\right)-\left(x-1\right)+3\)

=> \(f\left(x\right)=x.x-x+3=x^2-x+3\)

18 tháng 2 2017

a ) |x - 5| + |x + 6| = |5 - x| + |x + 6|

Áp dụng bđt |a| + |b| ≥ |a + b| ta có :

|5 - x| + |x + 6| ≥ |5 - x + x + 6| = |11| = 11

Dấu "=" xảy ra <=> (5 - x)(x + 6) ≥ 0 <=> - 6 ≤ x ≤ 5

Vậy gtnn của |x - 5| + |x + 6| là 11 <=> - 6 ≤ x ≤ 5

b ) Vì (3x - 1)2 ≥ 0

Để |3x - 1| - (3x - 1)2 max <=> (3x - 1)2 min hay (3x - 1)2 = 0 => x = 1/3

=> max |3x - 1| - (3x - 1)= 0 tại x = 1/3

18 tháng 2 2017

a ) |x - 5| + |x + 6| = |5 - x| + |x + 6|

Áp dụng bđt |a| + |b| ≥ |a + b| ta có :

|5 - x| + |x + 6| ≥ |5 - x + x + 6| = |11| = 11

Dấu "=" xảy ra <=> (5 - x)(x + 6) ≥ 0 <=> - 6 ≤ x ≤ 5

Vậy gtnn của |x - 5| + |x + 6| là 11 <=> - 6 ≤ x ≤ 5

b ) Vì (3x - 1)2 ≥ 0

Để |3x - 1| - (3x - 1)2 max <=> (3x - 1)2 min hay (3x - 1)2 = 0 => x = 1/3

=> max |3x - 1| - (3x - 1)= 0 tại x = 1/3

6 tháng 2 2017

Vì (x + 1)2 ≥ 0; |3x - 2|2017 ≥ 0

=> (x + 1)2 + |3x - 2|2017 ≥ 0

=> A = 5 -  (x + 1)2 + |3x - 2|2017 ≤ 5 có gtnn là 5

Dấu "=" xảy ra khi (x + 1)2 = 0; |3x - 2|2017 = 0

=> x = - 1 ; y = 2/3

Vậy gtnn của A là 5 tại  x = - 1 ; y = 2/3

6 tháng 2 2017

nhận xét 

(x+1)^2 >=0 

|3x-2|^2017>=0 

=> 5 - ( x+1)^2 - |3x-2|^2017  =< 5 

vậy giá trị lớn nhất của biểu thức là 5 

không có giá trị của x để biểu thức đạt giá trị lớn nhất

19 tháng 4 2019

a,

*\(P\left(x\right)\) = \(-3x^2+4x-x^3+x^2+3x-1\)

\(P(x)=-3x^2+7x-x^3-1\)

\(P(x)=-x^3-3x^2+7x-1\)

* \(Q(x)=3x^4-x^2+x^3-2x-1-2x^3\)

\(Q(x)=3x^4-x^2-x^3-2x-1\)

\(Q(x)=3x^4-x^3-x^2-1\)

b, \(M(x)=P(x)-Q(x)\)

\(M(x)=-x^3-3x^2+7x-1-3x^4+x^3+x^2+1\)

\(M(x)=-2x^2+7x-3x^4\)

9 tháng 4 2017

câu 2:

a) ta có:

\(x^2-5x+4=0\\ \Rightarrow x^2-x-4x+4=0\\ \Rightarrow x^2-x-\left(4x-4\right)=0\\ \Rightarrow\left(x^2-x\right)-\left(4x-4\right)=0\\ \Rightarrow x\left(x-1\right)-4\left(x-1\right)=0\\ \Rightarrow\left(x-4\right)\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=4\\x=1\end{matrix}\right.\)

vậy x = {1;4} là nghiệm của đa thức x2 - 5x + 4

9 tháng 4 2017

b) ta có:

\(2x^2+3x+1=0\\ \Rightarrow2x^2+2x+x+1=0\\ \Rightarrow\left(2x^2+2x\right)+\left(x+1\right)=0\\ \Rightarrow2x\left(x+1\right)+\left(x+1\right)=0\\ \Rightarrow\left(2x+1\right)\left(x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x+1=0\\x+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=-1\end{matrix}\right.\)

vậy \(x=\left\{\dfrac{-1}{2};-1\right\}\) là nghiệm của đa thức 2x2 + 3x +1