\(\frac{1 }{x-\sqrt{x}+1}\)

b) B = \(\s...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2020

a) Ta có: \(x-\sqrt{x}+1=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\left(\forall x\right)\)

=> \(A=\frac{1}{x-\sqrt{x}+1}\le\frac{1}{\frac{3}{4}}=\frac{4}{3}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(\sqrt{x}-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{4}\)

Vậy Max(A) = 4/3 khi x = 1/4

b) \(B=\sqrt{4x-x^2+21}=\sqrt{-\left(x^2-4x+4\right)+25}\)

\(=\sqrt{25-\left(x-2\right)^2}\le\sqrt{25}=5\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy Max(B) = 5 khi x = 2

c) \(C=1+\sqrt{-9x^2+6x}=1+\sqrt{-\left(9x^2-6x+1\right)+1}\)

\(=1+\sqrt{1-\left(3x-1\right)^2}\le1+\sqrt{1}=2\)

Dấu "=" xảy ra khi: \(\left(3x-1\right)=0\Rightarrow x=\frac{1}{3}\)

Vậy Max(C) = 2 khi x = 1/3

d) Ta có: \(D=\sqrt{x-2}+\sqrt{4-x}\)

=> \(D^2=\left(\sqrt{x-2}+\sqrt{4-x}\right)\le\left(1^2+1^2\right)\left(x-2+4-x\right)\) ( BĐT Bunhia)

\(=2.2=4\)

=> \(D\le2\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(x-2=4-x\Rightarrow x=3\)

Vậy Max(D) = 2 khi x = 3

27 tháng 8 2020

cảm ơn bạn nhaaa

18 tháng 8 2020

c)\(C=5+\sqrt{-4x^2-4x}\)

\(C=5+\sqrt{1-\left(4x^2+4x+1\right)}\)

\(C=5+\sqrt{1-\left(2x+1\right)^2}\)

Ta có: \(-\left(2x+1\right)^2\le0\)

\(\sqrt{1-\left(2x+1\right)^2}\le1\)

\(\sqrt{1-\left(2x+1\right)^2}+5\le6\Leftrightarrow C\le6\)

Vậy \(C_{max}=6\) khi \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)

f) \(F=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(F=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(F=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x+1+3-2x\right|=4\)

\(F_{min}=4\) khi \(\left(2x-1\right)\left(3-2x\right)\ge0\Leftrightarrow\frac{1}{2}\le x\le\frac{3}{2}\)

Mấy còn lại tương tự =)))

26 tháng 7 2020

Bài 2 :

ĐKXĐ : \(\left\{{}\begin{matrix}x\le3\\x\le5\end{matrix}\right.\)

=> \(x\le3\)

Ta có : \(\sqrt{3-x}+\sqrt{5-x}=2\)

=> \(\sqrt{3-x}=2-\sqrt{5-x}\)

=> \(3-x=4-4\sqrt{5-x}+5-x\)

=> \(-4\sqrt{5-x}=-6\)

=> \(\sqrt{5-x}=\frac{3}{2}\)

=> \(x=2,75\) ( TM )

Ta có : \(A=\sqrt{3-2,75}-\sqrt{5-2,75}=-1\)

Vậy ...

NV
25 tháng 7 2020

Bạn viết lại để bài giùm

Có duy nhất câu c bạn viết đúng đề (có dấu "="), còn lại tới 3 câu ko biết dâu "=" ở đâu

16 tháng 12 2016

a/ ĐK: \(x \ge -1\). Đặt \(\sqrt{x+1}=a \ge 0\)
PT: \(\Leftrightarrow6a-3a-2a=5\)
\(\Leftrightarrow a=5\)
\(\Leftrightarrow x+1=15\Leftrightarrow x=24\)
(nhận)

b,c: Hai ý này đều làm theo cách bình phương hoặc đưa về phương trình chứa dấu giá trị tuyệt đối được nhé.

b) Cách 1: ĐKXĐ: Tự tìm
\(\sqrt{x^{2}-4x+4}=2\Leftrightarrow x^{2}-4x+4=4\Leftrightarrow x(x-4)=0\)
\(\Leftrightarrow x=0\) hoặc \(x=4\) cả 2 cái này đều TMĐK

Cách 2: \((\sqrt{x^2-4x+4}=2)\)
\(\Leftrightarrow \sqrt{(x-2)^2}=2\)
\(\Leftrightarrow \mid x-2\mid=2\)
Với \(x\geq 2\) thì :
\(x-2=2 \Leftrightarrow x=4\) (nhận)
Với \(x<2\) thì
\(-x-2=2\Leftrightarrow x=0\) (nhận)
Vậy \(S={0;4}\)

c) Cách 1: \(\sqrt{x^{2}-6x+9}=x-2\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x^{2}-6x+9=x^{2}-4x+4 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x=\frac{5}{2} \end{matrix}\right.\)
Nghiệm TMĐK

Cách 2: \((\sqrt{x^2-6x+9}=x-2)\)
\(\Leftrightarrow \mid x-3\mid =x-2\)
Với \(x\geq 3\) thì
\(x-3=x-2\Leftrightarrow 0x=-1\) ( vô lý)
Với \(x<3\) thì
\(-x+3=x-2\Leftrightarrow -2x=-5 \Leftrightarrow x=\frac{5}{2}\)
Vậy \(S={\frac{5}{2}}\)
d) ĐKXĐ: Tự tìm
\(\sqrt{x^{2}+4}=\sqrt{2x+3}\Leftrightarrow x^{2}+4=2x+3\Leftrightarrow x^{2}-2x+1=0\Leftrightarrow (x-1)^{2}=0\)
\(\Leftrightarrow x=1\)
e) ĐKXĐ: \(x\geq \frac{3}{2}\)
\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow \frac{2x-3}{x-1}=4\Rightarrow 2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\)
Nghiệm không TMĐK.
Phương trình vô nghiệm.
f) ĐKXĐ: \(x\geq \frac{-15}{2}\)
\(x+\sqrt{2x+15}=0\Leftrightarrow 2x+2\sqrt{2x+15}=0\Leftrightarrow 2x+15+2\sqrt{2x+15}+1-16=0\)
\(\Leftrightarrow (\sqrt{2x+15}+1)^{2}-4^{2}=0\Leftrightarrow (\sqrt{2x+15}+5)(\sqrt{2x+15}-3)=0\)
\(\Leftrightarrow \sqrt{2x+15}-3=0\Leftrightarrow \sqrt{2x+15}=3\Leftrightarrow 2x+15=9\Leftrightarrow x=-3\) (TMĐK)

16 tháng 12 2016

Giời, có thế cũng hok hiểu, lật sách giải ra coi :v

AH
Akai Haruma
Giáo viên
27 tháng 6 2019

Lời giải:

Bạn cứ nhớ công thức $\sqrt{x^2}=|x|$, rồi dùng điều kiện đề bài để phá dấu trị tuyệt đối là được

a)

\(\sqrt{16a^2}-5a=\sqrt{(4a)^2}-5a=|4a|-5a=4a-5a=-a\)

b)

\(3x+2-\sqrt{9x^2+6x+1}=3x+2-\sqrt{(3x)^2+2.3x.1+1^2}\)

\(=3x+2-\sqrt{(3x+1)^2}=3x+2-|3x+1|=3x+2-(3x+1)=1\)

c)

\(\sqrt{8+2\sqrt{7}}-\sqrt{7}=\sqrt{7+1+2.\sqrt{7}.\sqrt{1}}-\sqrt{7}\)

\(=\sqrt{(\sqrt{7}+1)^2}-\sqrt{7}=|\sqrt{7}+1|-\sqrt{7}=\sqrt{7}+1-\sqrt{7}=1\)

d)

\(\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}=\sqrt{13+1-2\sqrt{13}}+\sqrt{13+1+2\sqrt{13}}\)

\(=\sqrt{(\sqrt{13}-1)^2}+\sqrt{(\sqrt{13}+1)^2}=|\sqrt{13}-1|+|\sqrt{13}+1|\)

\(=\sqrt{13}-1+\sqrt{13}+1=2\sqrt{13}\)

e)

\(2x-\sqrt{4x^2-4x+1}=2x-\sqrt{(2x-1)^2}=2x-|2x-1|=2x-(2x-1)=1\)

g)

\(|x-2|+\frac{\sqrt{x^2-4x+4}}{x-2}=|x-2|+\frac{\sqrt{(x-2)^2}}{x-2}=|x-2|+\frac{|x-2|}{x-2}\)

\(=(x-2)+\frac{(x-2)}{x-2}=x-2+1=x-1\)

27 tháng 6 2019

dạ em cảm ơn thầy/cô ạ

7 tháng 5 2018

a)\(\sqrt{4x}< =10\)

<=> 4x       <= 100                   

<=>  x     <= 25

b) \(\sqrt{9x}>=3\)

<=> 9x   >= 9

<=> x  >= 1

c) \(\sqrt{4x^2+4x+1}=6\)

<=>\(\sqrt{\left(2x\right)^2+2\left(2x\right).1+1^2}=6\)

<=>\(\sqrt{\left(2x+1\right)^2}=6\)

<=>\(|2x+1|=6\)

<=>\(\orbr{\begin{cases}2x+1=6\\2x+1=-6\end{cases}}\)

<=>\(\orbr{\begin{cases}2x=5\\2x=-7\end{cases}}\)

<=>\(\orbr{\begin{cases}x=\frac{5}{2}\\x=\frac{-7}{2}\end{cases}}\)

d)\(\sqrt{9x-9}-2\sqrt{x-1}=6\)

<=>\(\sqrt{9\left(x-1\right)}-2\sqrt{x-1}=6\)

<=>\(3\sqrt{x-1}-2\sqrt{x-1}=6\)

<=>\(\sqrt{x-1}=6\)

<=> x - 1       =     36

<=> x           =    37

f) \(\sqrt{2x+1}=\sqrt{x-1}\)

<=> 2x + 1         =   x -1

<=> 2x - x            = -1 -1

<=>  x                 = -2

g)\(\sqrt{x^2-x-1}=\sqrt{x-1}\)

<=>x2 -x  -1               = x -1

<=> x2 -x-x-1+1           = 0

<=> x2  - 2x  + 0           = 0

<=> x(x-2)                 = 0

<=>\(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)

<=>\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

8 tháng 5 2018

thanks bạn đã giúp mình 

15 tháng 7 2017

Đăng 1 lúc mà nhiều thế. Lần sau đăng 1 câu thôi b.

b/ \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)

Ta có: \(VT\ge1+2+\sqrt{5}=3+\sqrt{5}\)

Dấu = xảy ra khi \(x=2\)

c/ \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=\sqrt{3-\left(x-1\right)^2}+\sqrt{1-\left(x+3\right)^2}\)

\(\le1+\sqrt{3}\)

Dấu = không xảy ra nên pt vô nghiệm

Câu d làm tương tự

15 tháng 7 2017

\(a,\sqrt{x^2-4}-x^2+4=0\) 

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\) 

\(\Leftrightarrow x^2-4=\left(x-4\right)^2\) 

\(\Leftrightarrow x^2-4-x^4+8x^2-16=0\)  

\(\Leftrightarrow-x^4-7x^2-20=0\) 

\(\Leftrightarrow-\left(x^4+7x^2+\frac{49}{4}\right)-\frac{31}{4}=0\) 

\(\Leftrightarrow-\left(x^2+\frac{7}{2}\right)^2=\frac{31}{4}\) 

\(\Leftrightarrow\left(x^2+\frac{7}{2}\right)=-\frac{31}{4}\) 

\(\Rightarrow\)pt vô nghiệm