\(^{x^2}\) + 2x 

b) 4x - \(x^2\) ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2016

a, 4 - x2 +2x = -(x2-2x+1)+3

                    =-(x-1)2 +3

vì -(x-1)2 <= 0 vs mọi x =>-(x-1)2 +3 <=vs mọi x 

=>-(x-1)2 +3 <= 3

dâu ''='' xay ra khi va chi khi x-1=0 =>x=1

vay ....

b,4x - x= -(x2-4x+4)-4

              =-(x -2)2 -4

 vi -(x-2)2<=0 vs mọi x suy ra -(x-2)2 -4 <=0

=>-(x-2)2 -4 <=-4

dau = xay ra khi va chi khi x-2=0 =>x=2

vậy......

 

 

 

 

 

 

 

 

 

 

.

4 tháng 10 2016

câu c 

15 tháng 7 2019

a) Ta có:

1/x+1/2x=3/2

2/2x+1/2x=3/2

3/2x=3/2

=>2x=2

=>x=1

Vậy x=1

#Học tốt

3 tháng 1 2019

a) ta có: \(A=4x-4x^2=-\left(4x^2-4x\right)=-\left(4x^2-4x+1-1\right)=-\left(2x-1\right)^2+1.\)\(\le1\)

Để A có GTLN

=> - (2x-1)2 + 1 = 1

=> - (2x-1)2 = 0 => x = 1/2

KL: Max A = 1 tại x = 1/2

b)Max B = 3/2 tại x = 5/2

c) ta có: \(C=\frac{5}{x^2-3x+4}=\frac{5}{\left(x-\frac{3}{2}\right)^2+\frac{5}{2}}\le2\)

...

bn tự làm tiếp nha

26 tháng 7 2016

a. \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)

vì \(\left(x-1\right)^2\ge0\) với mọi x

=> (x-1)^2 +4 \(\ge\) vợi mọi x

Pmin=4 <=> x-1=0 <=>x=1

 

 

26 tháng 7 2016

1.

b)\(M=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu = xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\) và \(y+3=0\)

\(\Leftrightarrow x=\frac{1}{2}\) và \(y=-3\)

Vậy GTNN của M là \(\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)và \(y=-3\)

Y
17 tháng 6 2019

a) \(=x^4-2x^3-3x^2+4x+4+x^2-4x+4\)

\(=x^4-2x^3-2x^2+8\)

\(=x^3\left(x-2\right)-2x\left(x-2\right)-4\left(x-2\right)\)

\(=\left(x^3-2x-4\right)\left(x-2\right)\)

\(=\left[x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\right]\left(x-2\right)\)

\(=\left(x-2\right)^2\left(x^2+2x+2\right)\)

b) \(=x^4-x+2019\left(x^2+x+1\right)\)

\(=x\left(x^3-1\right)+2019\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2019\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2019\right)\)\

17 tháng 6 2019

c)\(x^4+2x^3+5x^2+4x-5\\=x^4+x^3+x^3-x^2+x^2+5x^2-x+5x-5\\ =x^2\left(x^2+x-1\right)+x\left(x^2+x-1\right)+5\left(x^2+x-1\right)=\left(x^2+x-1\right)\left(x^2+x+5\right)\)

2 tháng 1 2018

\(A=-\dfrac{4}{x^2-4x+10}\\ =-\dfrac{4}{\left(x^2-2.x.2+4+6\right)}\\ =-\dfrac{4}{\left(x-2\right)^2+6}\)

\(\left(x-2\right)^2\ge0\\ \Rightarrow\left(x-2\right)^2+6\ge6\\ \Rightarrow\dfrac{4}{\left(x-2\right)^2+6}\le\dfrac{2}{3}\\ \Rightarrow A=-\dfrac{4}{\left(x-2\right)^2+6}\ge-\dfrac{2}{3}\)

Min A=-2/3 khi x=2

3 tháng 1 2018

\(C=\dfrac{2}{x^2+4x+5}=\dfrac{2}{\left(x+2\right)^2+1}\)

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1\)

\(\Rightarrow C\le2\)

Dấu ''='' xảy ra \(\Leftrightarrow x=-2\)

Vậy Min C = 2 kjhi x = -2

31 tháng 8 2020

c) \(\left(3x+5\right)^2-2\left(2x+3\right)\left(3x+5\right)+\left(2x+3\right)^2=\left(x+2\right)^3\)

\(\Leftrightarrow\left[\left(3x+5\right)-\left(2x+3\right)\right]^2=\left(x+2\right)^3\)

\(\Leftrightarrow\left(3x+5-2x-3\right)^2=\left(x+2\right)^3\)

\(\Leftrightarrow\left(x+2\right)^2=\left(x+2\right)^3\)

\(\Leftrightarrow\left(x+2\right)^3-\left(x+2\right)^2=0\)

\(\Leftrightarrow\left(x+2\right)^2.\left(x+2-1\right)=0\)

\(\Leftrightarrow\left(x+2\right)^2.\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-1\end{cases}}\)

Vậy tập nghiệm của phương trình là: \(S=\left\{-2;-1\right\}\)

17 tháng 9 2018

bài 1 : ta có : \(A=27x^3+27x^2y+9xy^2+y^3=\left(3x+y\right)^3\)

\(=\left(3.\left(-3\right)+5\right)^3=\left(-9+5\right)^3=\left(-4\right)^3=-64\)

bài 2 : a) ta có : \(12a^2-3ab+8ac-2bc=3a\left(4a-b\right)+2c\left(4a-b\right)\)

\(=\left(3a+2c\right)\left(4a-b\right)\) câu này mk sữa đề lại chút .

b) ta có : câu này đề sai rồi .

nếu phân tích ra nó sẽ thành : \(17x^2+34x-5=\left(17x+17-\sqrt{374}\right)\left(x+\dfrac{17+\sqrt{374}}{17}\right)\)

c) ta có : \(4x^4+81=\left(2x^2\right)^2+36x^2+81-36x^2\)

\(=\left(2x^2+9\right)^2-36x^2=\left(2x^2+9-6x\right)\left(2x^2+9+6x\right)\)

câu 3 : a) ta có : \(-3x^2+2x+1=0\Leftrightarrow-3x^2+3x-x+1=0\)

\(\Leftrightarrow-3x\left(x-1\right)-\left(x-1\right)=0\Leftrightarrow\left(-3x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-3x-1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=1\end{matrix}\right.\) vậy \(x=\dfrac{-1}{3};x=1\)

b) ta có : \(x\left(x-3\right)=2x-6=x\left(x-3\right)-2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

vậy \(x=2;x=3\)