![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=-\dfrac{4}{x^2-4x+10}\\ =-\dfrac{4}{\left(x^2-2.x.2+4+6\right)}\\ =-\dfrac{4}{\left(x-2\right)^2+6}\)
\(\left(x-2\right)^2\ge0\\ \Rightarrow\left(x-2\right)^2+6\ge6\\ \Rightarrow\dfrac{4}{\left(x-2\right)^2+6}\le\dfrac{2}{3}\\ \Rightarrow A=-\dfrac{4}{\left(x-2\right)^2+6}\ge-\dfrac{2}{3}\)
Min A=-2/3 khi x=2
\(C=\dfrac{2}{x^2+4x+5}=\dfrac{2}{\left(x+2\right)^2+1}\)
Vì \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1\)
\(\Rightarrow C\le2\)
Dấu ''='' xảy ra \(\Leftrightarrow x=-2\)
Vậy Min C = 2 kjhi x = -2
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x^2-20x+101\)
\(=-\left(x^2+20x-101\right)\)
\(=-\left[\left(x^2+2x.10-10^2\right)+1\right]\)
\(=\left[\left(x-10\right)^2+1\right]\)
\(=-\left(x-10\right)^2-1\)
Nhận xét : \(-\left(x-10\right)^2\le0\)với mọi x
\(\Leftrightarrow-\left(x-10\right)^2-1\le-1\) với mọi x
Vậy GTLN của biểu thức là -1 đạt được khi :
(x-10)2 = 0
=> (x-10) =0
=> x = 0 + 10
=> x = 10
~Chắc vậy~
b/ \(4x^2+4x+2\)
= \(\left[\left(2x\right)^2+2.2x.1+1^2\right]+1\)
= \(\left(2x+1\right)^2+1\) \(\ge1\forall x\in R\)
Dấu '' = '' xảy ra <=> \(\left(2x+1\right)^2=0\) => \(x=\dfrac{-1}{2}\)
Vậy MaxB = 1 <=> \(x=\dfrac{-1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(-x^2+6x+1=-\left(x^2-6x+9\right)+10=-\left(x-3\right)^2+10\le10\)
Vậy Max = 10 <=> x = 3
b) \(-5x^2-4x+1=-5\left(x^2+2.x.\frac{2}{5}+\frac{4}{25}\right)+\frac{4}{5}+1=-5\left(x+\frac{2}{5}\right)^2+\frac{9}{5}\le\frac{9}{5}\)
Vậy Max = \(\frac{9}{5}\Leftrightarrow x=-\frac{2}{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(A=7-\left(x^2-4x+4\right)=7-\left(x-2\right)^2\le7\)
Vậy GTLN của A là 7 khi x=2
b, \(B=\frac{1}{4}-x^2+x-\frac{1}{4}=\frac{1}{4}-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{1}{4}\)
Vậy GTLN của B là 1/4 khi x=1/2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(B=\left(x-y-1\right)^2+3\left(y-2\right)^2+2005\text{ }\ge2005\)
\(C=\left(x^2+4x\right)^2-25\ge-25\)
\(2004.2006.\left(2005^2+1\right)=\left(2005-1\right)\left(2005+1\right)\left(2005^2+1\right)\)
\(=\left(2005^2-1\right)\left(2005^2+1\right)=2005^4-1< 2005^4\)
\(-4x-x^2=-x^2-2.x.2-4+4\)
\(-\left(x^2+2.x.2+4\right)+4=-\left(x+2\right)^2+4\)
\(Do-\left(x+2\right)^2\le0\Rightarrow-\left(x+2\right)^2+4\le4\)
Dấu = xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy Max(-4x-x2) = 4 <=> x= -2