![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(F=2\left|3x-2\right|-1\)
Vì \(\left|3x-2\right|\ge0\forall x\Rightarrow2\left|3x-2\right|\ge0\)
\(\Rightarrow2\left|3x-2\right|-1\ge-1\)
''='' xảy ra khi \(3x-2=0\Rightarrow x=\dfrac{2}{3}\)
=> \(F_{min}=-1\)
b) \(G=x^2+3\left|y-2\right|-1\)
Ta có: \(\left\{{}\begin{matrix}x^2\ge0\forall x\\3\left|y-2\right|\ge0\forall y\end{matrix}\right.\)
=> \(x^2+3\left|y-2\right|\ge0\Rightarrow x^2+3\left|y-2\right|-1\ge-1\)
''='' xảy ra khi \(\left\{{}\begin{matrix}x^2=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
Vậy \(G_{min}=-1\)
\(A=2\left|3x-2\right|-1\ge-1\)
Dấu "=" xảy ra khi : \(x=\dfrac{2}{3}\)
\(B=x^2+3\left|y-2\right|-1\ge-1\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì \(\left|3x^2+1\right|\ge0\) nên GTNN của A=2
\(\Leftrightarrow3x^2+1=0\Rightarrow3x^2=-1\Rightarrow x^2=-\frac{1}{3}\)
Vì thế không có x thỏa mãn
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=x^2-5x+1=x^2-2.x.\frac{5}{2}+\left(\frac{5}{2}\right)^2-\frac{21}{4}=\left(x-\frac{5}{2}\right)^2-\frac{21}{4}\)
Vì \(\left(x-\frac{5}{2}\right)^2\ge0\)
nên \(\left(x-\frac{5}{2}\right)^2-\frac{21}{4}\ge-\frac{21}{4}\)
Vậy \(Min_{x^2-5x+1}=-\frac{21}{4}\)khi \(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\).
\(B=1-x^2+3x=-\left(x^2-3x-1\right)=-\left[x^2-2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{13}{4}\right]=-\left[\left(x-\frac{3}{2}\right)^2-\frac{13}{4}\right]=-\left(x-\frac{3}{2}\right)^2+\frac{13}{4}\)Vì \(\left(x-\frac{3}{2}\right)^2\ge0\)
nên \(-\left(x-\frac{3}{2}\right)^2\le0\)
do đó \(-\left(x-\frac{3}{2}\right)^2+\frac{13}{4}\le\frac{13}{4}\)
Vậy \(Max_{1-x^2+3x}=\frac{13}{4}\)khi \(x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(M=\frac{x^2+y^2+7}{x^2+y^2+5}=1+\frac{2}{x^2+y^2+5}\)
Ta có: \(x^2+y^2\ge0,\forall x;y\)
=> \(x^2+y^2+5\ge5\) với mọi x; y
=> \(\frac{2}{x^2+y^2+5}\le\frac{2}{5}\)
=> \(M\le1+\frac{2}{5}=\frac{7}{5}\)
Dấu "=" xảy ra <=> x = y = 0
Vậy max M = 7/5 đạt tại x = y = 0
2) \(f\left(x-1\right)=x^2-3x+5=x^2-x-2x+2+3\)
\(=x\left(x-1\right)-2\left(x-1\right)+3=x\left(x-1\right)-\left(x-1\right)-\left(x-1\right)+3\)
\(=\left(x-1\right)\left(x-1\right)-\left(x-1\right)+3\)
=> \(f\left(x\right)=x.x-x+3=x^2-x+3\)
\(A=-\left|2-3x\right|+\dfrac{1}{2}\le\dfrac{1}{2}\)
Dấu " = " khi \(-\left|2-3x\right|=0\Rightarrow x=\dfrac{2}{3}\)
Vậy \(MAX_A=\dfrac{1}{2}\) khi \(x=\dfrac{2}{3}\)