K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 4 2019

\(A=x^2+6xy+9y^2+2x^2+6xy-10x+21\)

\(A=\left(x+3y\right)^2+2x\left(x+3y\right)-10x+21\)

\(A=5^2+2x.5-10x+21\)

\(A=25+10x-10x+21\)

\(A=46\)

26 tháng 7 2017

Bài 1: Viết các biểu thức sau dưới dạng bình phương của 1 tổng hoặc 1 hiệu

a) \(4x^2-12xy+9y^2=\left(2x\right)^2-2.2x.3y+\left(3y\right)^2=\left(2x-3y\right)^2\)

b) \(25x^2-20xy+4y^2=\left(5x\right)^2-2.5x.2y+\left(2y\right)^2=\left(5x-2y\right)^2\)

c) \(9x^2+y^2-6xy=\left(3x\right)^2-2.3xy+y^2=\left(3x-y\right)^2\)

d) \(x^2+6xy+9y^2=x^2+2x.3y+\left(3y\right)^2=\left(x+3y\right)^2\)

e) \(x^2-10xy+25y^2=x^2-2x.5y+\left(5y\right)^2=\left(x-5y\right)^2\)

g) \(\left(3x+2y\right)^2+2\left(3x+2y\right)+1=\left(3x+2y+1\right)^2\)

Câu cuối mình sửa lại đề nhé bạn! Nếu để như trên đề thì không thể viết đáp án dưới dạng bình phương của 1 tổng hoặc 1 hiệu được.

26 tháng 7 2017

\(4x^2-12xy+9y^2=\left(2x-3y\right)^2\)

\(25x^2-20xy+4y^2=\left(5x-2y\right)^2\)

\(9x^2+y^2-6xy=\left(3x-y\right)\)

\(x^2+6xy+9y^2=\left(x+3y\right)^2\)

\(x^2-10xy+25y^2=\left(x-5y\right)^2\)

\(\left(3x+2y\right)+2\left(3x+2y\right)+1=3\left(3x+2y\right)+1=9x+6y+1\)

25 tháng 4 2020

bài 1 : 

B=15-3x-3y

a) x+y-5=0 

=>x+y=-5

B=15-3x-3y <=> B=15-3(x+y)

Thay x+y=-5 vào biểu thức  B ta được :

B=15-3(-5)

B=15+15

B=30

Vậy giá trị của biểu thức B=15-3x-3y tại x+y+5=0 là 30

b)Theo đề bài ; ta có :

B=15-3x-3.2=10

15-3x-6=10

15-3x=16

3x=-1

\(x=\frac{-1}{3}\)

Bài 2:

a)3x2-7=5

3x2=12

x2=4

x=\(\pm2\)

b)3x-2x2=0

=> 3x=2x2

=>\(\frac{3x}{x^2}=2\)

=>\(\frac{x}{x^2}=\frac{2}{3}\)

=>\(\frac{1}{x}=\frac{2}{3}\)

=>\(3=2x\)

=>\(\frac{3}{2}=x\)

c) 8x2 + 10x + 3 = 0

=>\(8x^2-2x+12x-3=0\)

\(\Rightarrow\left(2x+3\right)\left(4x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x+3=0\\4x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-3\\4x=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{1}{4}\end{cases}}}\)

vậy \(x\in\left\{-\frac{3}{2};\frac{1}{4}\right\}\)

Bài 5 đề  sai  vì  |1| không thể =2

16 tháng 8 2017
Với x/3= y/5 => 5x=3y => x=3y /5 =>x2 = 9y2 /25 . Thay vào A ta được: A= (5. 9y2 /25 + 3y2) / (10. 9y2 /5 -3y2) = (9y2 /5 +3y2) / (18y2 /5 -3y2) = (24/5y2) / (3/5y2) => 24/5 : 3/5 = 8 Vậy A=8
7 tháng 9 2017

Bài 1 :

Theo đề ta có :

\(12x^2-6x\left(2x-1\right)=8\)

\(\Rightarrow12x^2-\left(12x^2-6x\right)=8\)

\(\Rightarrow12x^2-12x^2+6x=8\)

\(\Rightarrow6x=8\)

\(\Rightarrow x=\frac{8}{6}=\frac{4}{3}\)

8 tháng 8 2019

TL:

\(B=2x^2+y^2-2xy-2x+3\)

    \(=\left(x^2-2xy+y^2\right)+(x^2-2x+1)+2\)

    \(=\left(x-y\right)^2+\left(x-1\right)^2+2\ge2\forall x;y\)

8 tháng 8 2019

\(D=\left(x+8\right)^4+\left(x+6\right)^4\ge0\forall x\)

Dấu"=" xảy ra<=> \(\hept{\begin{cases}\left(x+8\right)^4=0\\\left(x+6\right)^4=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=-8\\x=-6\end{cases}}\)

NV
2 tháng 7 2020

\(2x^2+9y^2-6xy+4x+5\)

\(=\left(x^2-6xy+9y^2\right)+\left(x^2+4x+4\right)+1\)

\(=\left(x-3y\right)^2+\left(x+2\right)^2+1>0\) ;\(\forall x;y\)

\(10x^2+10xy+25y^2-8x+20\)

\(=x^2+10xy+25y^2+9x^2-8x+\frac{16}{9}+\frac{164}{9}\)

\(=\left(x+5y\right)^2+\left(3x-\frac{4}{3}\right)^2+\frac{164}{9}>0\); \(\forall x;y\)