Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=\frac{x-2}{x-6}=\frac{x-6+4}{x-6}=\frac{4}{x-6}\)hay
\(x-6\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
x - 6 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 7 | 5 | 8 | 4 | 10 | 2 |
Sorry tớ chưa học bạn ạ xin lỗi bạn nha ^_^
ko ghi lại đề nha !!!
D có giá trị âm khi
\(x^2-\frac{2}{5}x< 0\)
Cho \(x^2-\frac{2}{5}x=0\)
<=> x(x - 2/5) = 0
<=> \(\orbr{\begin{cases}x=0\\x-\frac{2}{5}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{2}{5}\end{cases}}\)
Bảng xét dấu:
x y=x y=x-2/5 VT -oo 0 2/5 +oo 0 0 + + - + - - 0 0 + - +
Vậy: biểu thức D nhận giá trị âm khi \(x\in\left(0;\frac{2}{5}\right)\) ( có nghĩa là x sẽ bằng tất cả các số "từ lớn hơn 0 đến bé hơn 2/5 )
Chú ý: đây là cách giải của lớp 10 và 11 nếu em ko hiểu thì cx chịu chứ anh ko nhớ cách lớp 7
----câu E và F còn dễ hơn câu D này nữa nên em tự giải nha !!!!!!!
\(\frac{x-2}{x-6}< 0\)
TH1 : \(\hept{\begin{cases}x-2< 0\\x-6>0\end{cases}\Rightarrow\hept{\begin{cases}x< 2\\x>6\end{cases}}}\)
Th2 : \(\hept{\begin{cases}x-2>0\\x-6< 0\end{cases}\Rightarrow\hept{\begin{cases}x>2\\x< 6\end{cases}}}\)
bài 1:
\(\left(\frac{1}{2}-2\right).\left(\frac{1}{3}-x\right)>0\)
\(\Leftrightarrow\left(-\frac{3}{2}\right)\left(\frac{1}{3}-x\right)>0\)
Để biểu thức \(\left(\frac{1}{2}-2\right)\left(\frac{1}{3}-x\right)\) nhận giá trị dương thì \(-\frac{3}{2}\)và \(\frac{1}{3}-x\)phải cùng âm
\(\Leftrightarrow\frac{1}{3}-x< 0\)
\(\Leftrightarrow x>\frac{1}{3}\)
Vậy \(x>\frac{1}{3}\)thì biểu thức\(\left(\frac{1}{2}-2\right)\left(\frac{1}{3}-x\right)\) nhận giá trị dương
bài 2:
a)Để \(\frac{x^2-2}{5x}\) nhận giá trị âm thì x2-2<0 hoặc 5x<0
+)Nếu x2-2<0
=>x2<2
=>x<\(\sqrt{2}\)
+)Nếu 5x<0
=>x<0
Vậy x<\(\sqrt{2}\)hoặc x<0 thì biểu thức \(\frac{x^2-2}{5x}\)nhận giá trị âm
b)Để E nhận giá trị âm thì \(\frac{x-2}{x-6}\)nhận giá trị âm
=>x-2<0 hoặc x-6<0
+)Nếu x-2<0
=>x<2
+)Nếu x-6<0
=>x<6
Vậy x<2 hoặc x<6 thì biểu thức E nhận giá trị âm
Giải: a) Để VP có nghĩa <=> x - 1 \(\ne\)0 <=> x \(\ne\)1
b) Ta có: f(7) = \(\frac{7+2}{7-1}=\frac{9}{6}=\frac{3}{2}\)
f(-3) = \(\frac{-3+2}{-3-1}=\frac{-1}{-4}=\frac{1}{4}\)
c) Ta có: f(x) = 1/4
=> \(\frac{x+2}{x-1}=\frac{1}{4}\)
=> (x + 2).4 = x - 1
=> 4x + 8 = x - 1
=> 4x - x = -1 - 8
=> 3x = -9
=> x = -9 : 3
=> x = -3
d) Ta có: f(x) = \(\frac{x+2}{x-1}=\frac{\left(x-1\right)+3}{x-1}=1+\frac{3}{x-1}\)
Để f(x) \(\in\)Z <=> 3 \(⋮\)x - 1 <=> x - 1 \(\in\)Ư(3) = {1; -1; 3; -3}
+) x - 1 = 1 => x = 1 + 1 = 2
+) x - 1 = -1 => x = -1 + 1 = 0
+) x - 1 = 3 => x = 3 + 1 = 4
+) x - 1 = -3 => x = -3 + 1 = -2
a) có nghĩa khi \(x-1\ne0\Rightarrow x\ne1\)
b)\(f\left(7\right)=\frac{7+2}{7-1}=\frac{9}{6}\)
c)\(f\left(x\right)=\frac{x+2}{x-1}=\frac{1}{4}\Leftrightarrow x+2=4x-4\)
\(\Leftrightarrow-3x=-6\Leftrightarrow x=2\)
e)\(f\left(x\right)>1\Rightarrow\frac{x+2}{x-1}-1>0\)
\(\Rightarrow\frac{3}{x-1}>0\) thấy 3>0 nên x-1>0 =>x>1
Bài 2:
a)\(P=9-2\left|x-3\right|\)
Thấy: \(\left|x-3\right|\ge0\)\(\Rightarrow2\left|x-3\right|\ge0\)
\(\Rightarrow-2\left|x-3\right|\le0\)
\(\Rightarrow9-2\left|x-3\right|\le9\)
Khi x=3
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(Q=\left|x-2\right|+\left|x-8\right|\)
\(=\left|x-2\right|+\left|8-x\right|\)
\(\ge\left|x-2+8-x\right|=6\)
Khi \(2\le x\le8\)
\(D=\frac{x^2-2}{5x}< 0\Leftrightarrow\)\(x^2-2\)và 5x trái dấu
\(TH1:\hept{\begin{cases}x^2-2>0\\5x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2>2\\x< 0\end{cases}}\Leftrightarrow x< 2\)
\(TH2:\hept{\begin{cases}x^2-2< 0\\5x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2< 2\\x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}-2< x< 2\\x>0\end{cases}}\Leftrightarrow0< x< 2\)
\(E=\frac{x-2}{x-6}< 0\Leftrightarrow\hept{\begin{cases}x-2>0\\x-6< 0\end{cases}}\Leftrightarrow2< x< 6\)
\(F=\frac{x^2-1}{x^2}< 0\Leftrightarrow x^2-1< 0\Leftrightarrow-1< x< 1\)