\(x^2+mx+1=0\) và \(x^2+x+m=0\) có...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 9 2019

Gọi a là nghiệm chung của 2 pt

\(\Rightarrow\left\{{}\begin{matrix}a^2+ma+1=0\\a^2+a+m=0\end{matrix}\right.\) (1)

\(\Rightarrow\left(m-1\right)a+1-m=0\Rightarrow\left(m-1\right)a=m-1\)

- Với \(m=1\Rightarrow\) 2 pt luôn có nghiệm chung

- Với \(m\ne1\Rightarrow a=\frac{m-1}{m-1}=1\)

Thay vào (1): \(\left\{{}\begin{matrix}2+m=0\\2+m=0\end{matrix}\right.\) \(\Rightarrow m=-2\)

Vậy với \(\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\) thì 2 pt có ít nhất 1 nghiệm chung

Nhiều thế, chắc phải đưa ra đáp thôi

NV
28 tháng 9 2019

Khi pt có nghiệm \(x=\sqrt{2}-1\)

\(\Rightarrow\left(\sqrt{2}-1\right)^2+a\left(\sqrt{2}-1\right)+b=0\)

\(\Rightarrow3-2\sqrt{2}+a\sqrt{2}-a+b=0\)

\(\Rightarrow\left(a-2\right)\sqrt{2}=a-b-3\)

Do a; b hữu tỉ \(\Rightarrow VP\) hữu tỉ \(\Rightarrow VT\) hữu tỉ

\(\sqrt{2}\) vô tỉ nên dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}a-2=0\\a-b-3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)

28 tháng 9 2019

thanks nhe

:3

AH
Akai Haruma
Giáo viên
4 tháng 7 2019

Lời giải:

a) Theo định lý Vi-et:

\(\left\{\begin{matrix} x_1+x_2=\frac{-3}{4}\\ x_1x_2=\frac{-m^2+3m}{4}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -2+x_2=\frac{-3}{4}\\ (-2)x_2=\frac{-m^2+3m}{4}\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x_2=\frac{5}{4}\\ (-2)x_2=\frac{-m^2+3m}{4}\end{matrix}\right.\)

\(\Rightarrow \frac{-m^2+3m}{4}=(-2).\frac{5}{4}=\frac{-10}{4}\)

\(\Rightarrow -m^2+3m=-10\)

\(\Leftrightarrow m^2-3m-10=0\Leftrightarrow (m-5)(m+2)=0\Rightarrow \left[\begin{matrix} m =5\\ m=-2\end{matrix}\right.\)

b)

Theo định lý Vi-et \(\left\{\begin{matrix} x_1+x_2=\frac{2(m-3)}{3}\\ x_1x_2=\frac{5}{3}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{1}{3}+x_2=\frac{2(m-3)}{3}\\ \frac{1}{3}x_2=\frac{5}{3}\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \frac{1}{3}+x_2=\frac{2(m-3)}{3}\\ x_2=5\end{matrix}\right.\)

\(\Rightarrow \frac{2(m-3)}{3}=\frac{1}{3}+5=\frac{16}{3}\)

\(\Rightarrow 2(m-3)=16\Rightarrow m=11\)

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:

a) Theo định lý Vi-et:

\(\left\{\begin{matrix} x_1+x_2=\frac{-3}{4}\\ x_1x_2=\frac{-m^2+3m}{4}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -2+x_2=\frac{-3}{4}\\ (-2)x_2=\frac{-m^2+3m}{4}\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x_2=\frac{5}{4}\\ (-2)x_2=\frac{-m^2+3m}{4}\end{matrix}\right.\)

\(\Rightarrow \frac{-m^2+3m}{4}=(-2).\frac{5}{4}=\frac{-10}{4}\)

\(\Rightarrow -m^2+3m=-10\)

\(\Leftrightarrow m^2-3m-10=0\Leftrightarrow (m-5)(m+2)=0\Rightarrow \left[\begin{matrix} m =5\\ m=-2\end{matrix}\right.\)

b)

Theo định lý Vi-et \(\left\{\begin{matrix} x_1+x_2=\frac{2(m-3)}{3}\\ x_1x_2=\frac{5}{3}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{1}{3}+x_2=\frac{2(m-3)}{3}\\ \frac{1}{3}x_2=\frac{5}{3}\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \frac{1}{3}+x_2=\frac{2(m-3)}{3}\\ x_2=5\end{matrix}\right.\)

\(\Rightarrow \frac{2(m-3)}{3}=\frac{1}{3}+5=\frac{16}{3}\)

\(\Rightarrow 2(m-3)=16\Rightarrow m=11\)

7 tháng 4 2019

a) \(2x^3-5x^2+2x=0\)

<=> \(x\left(2x^2-5x+2\right)=0\)

<=> \(\orbr{\begin{cases}x=0\\2x^2-5x+2=0\left(1\right)\end{cases}}\)

Giải (1) : \(\Delta=\left(-5\right)^2-4.2.2=9>0\)

pt (1) có 2 nghiệm phân biệt: 

\(\orbr{\begin{cases}x=\frac{5-\sqrt{9}}{2.2}=\frac{1}{2}\\x=\frac{5+\sqrt{9}}{2.2}=2\end{cases}}\)

Vậy có 3 nghiệm phân biệt...

b) \(\hept{\begin{cases}2x+3y=-7\\x=-2-2y\end{cases}\Leftrightarrow}\hept{\begin{cases}2\left(-2-2y\right)+3y=-7\\x=-2-2y\end{cases}\Leftrightarrow\hept{\begin{cases}-4-4y+3y=-7\\x=-2-2y\end{cases}\Leftrightarrow}\hept{\begin{cases}y=3\\x=-8\end{cases}}}\)

d) phương trình có : \(\Delta=\left(2m-1\right)^2-4.2.\left(m-1\right)=4m^2-4m+1-8m+8=4m^2-12m+9=\left(2m-3\right)^2\ge0\)

Với mọi m

Như vậy phương trình có nghiệm với mọi m