\(\lim\limits_{x\rightarrow+\infty}\left(x+1-\sqrt{x^2-x+2}\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 1 2021

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(x+1\right)^2-\left(x^2-x+2\right)}{x+1+\sqrt{x^2-x+2}}=\lim\limits_{x\rightarrow+\infty}\dfrac{3x-1}{x+1+\sqrt{x^2-x+2}}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{3-\dfrac{1}{x}}{1+\dfrac{1}{x}+\sqrt{1-\dfrac{1}{x}+\dfrac{2}{x^2}}}=\dfrac{3}{2}\)

27 tháng 1 2021

Nguyễn Việt Lâm sao đoạn cuối nó =\(\dfrac{3}{2}\) luôn thế anh?? Anh giai thích giùm e vs ahh

NV
15 tháng 3 2020

Bài 1:

\(a=\lim\limits_{x\rightarrow-\infty}\frac{2\left|x\right|+1}{3x-1}=\lim\limits_{x\rightarrow-\infty}\frac{-2x+1}{3x-1}=\lim\limits_{x\rightarrow-\infty}\frac{-2+\frac{1}{x}}{3-\frac{1}{x}}=-\frac{2}{3}\)

\(b=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{9+\frac{1}{x}+\frac{1}{x^2}}-\sqrt{4+\frac{2}{x}+\frac{1}{x^2}}}{1+\frac{1}{x}}=\frac{\sqrt{9}-\sqrt{4}}{1}=1\)

\(c=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{1+\frac{2}{x}+\frac{3}{x^2}}+4+\frac{1}{x}}{\sqrt{4+\frac{1}{x^2}}+\frac{2}{x}-1}=\frac{1+4}{\sqrt{4}-1}=5\)

\(d=\lim\limits_{x\rightarrow+\infty}\frac{\frac{3}{x}-\frac{2}{x\sqrt{x}}+\sqrt{1-\frac{5}{x^3}}}{2+\frac{4}{x}-\frac{5}{x^2}}=\frac{1}{2}\)

NV
15 tháng 3 2020

Bài 2:

\(a=\lim\limits_{x\rightarrow-\infty}\frac{2+\frac{1}{x}}{1-\frac{1}{x}}=2\)

\(b=\lim\limits_{x\rightarrow-\infty}\frac{2+\frac{3}{x^3}}{1-\frac{2}{x}+\frac{1}{x^3}}=2\)

\(c=\lim\limits_{x\rightarrow+\infty}\frac{x^2\left(3+\frac{1}{x^2}\right)x\left(5+\frac{3}{x}\right)}{x^3\left(2-\frac{1}{x^3}\right)x\left(1+\frac{4}{x}\right)}=\frac{15}{+\infty}=0\)

27 tháng 2 2020

\(\lim\limits_{x\rightarrow+\infty}\left(x-3\right)\left(\sqrt{x^2+x+3}-\sqrt{x^2+x+1}\right)\)

=\(\lim\limits_{x\rightarrow+\infty}\left(x-3\right)\frac{x^2+x+3-x^2-x-1}{\sqrt{x^2+x+3}+\sqrt{x^2+x+1}}\)

=\(\lim\limits_{x\rightarrow+\infty}\left(x-3\right)\frac{2}{\sqrt{x^2+x+3}+\sqrt{x^2+x+1}}\)

=\(\lim\limits_{x\rightarrow+\infty}\frac{2\left(1-\frac{3}{x}\right)}{\sqrt{1+\frac{1}{x}+\frac{3}{x^2}}+\sqrt{1+\frac{1}{x}+\frac{1}{x^2}}}=1\)

4 tháng 4 2017

a) (x4 – x2 + x - 1) = x4(1 - ) = +∞.

b) (-2x3 + 3x2 -5 ) = x3(-2 + ) = +∞.

c) = = +∞.

d) \(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+1}+x}{5-2x}=\lim\limits_{x\rightarrow+\infty}\dfrac{\left|x\right|\sqrt{1+\dfrac{1}{x^2}}+x}{5-2x}\)
 \(=\lim\limits_{x\rightarrow+\infty}\dfrac{x\sqrt{1+\dfrac{1}{x^2}}+x}{5-2x}\)\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{1+\dfrac{1}{x^2}}+1}{\dfrac{5}{x}-2}=-1\).