Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giới hạn trên có dạng \(\infty-\infty\), ta đưa nó về dạng \(\frac{0}{0}\) nhờ phép biến đổi sau :
Đặt \(x=\frac{1}{y}\), khi \(x\rightarrow+\infty\) thì \(y\rightarrow0\)
Ta có : \(L=\lim\limits_{y\rightarrow0}\frac{\sqrt[3]{\left(1+a_1y\right)\left(1+a_2y\right)\left(1+a_3y\right)}-1}{y}\)
Áp dụng phép đổi biến \(x=\frac{1}{y}\) ta có "
\(L=\lim\limits_{x\rightarrow+\infty}\left(\sqrt[n]{\left(x+a_1\right)\left(x+a_1\right)......\left(x+a_1\right)}-x\right)=\frac{a_1+a_2+....+a_n}{n}\)
\(L_1=\lim\limits_{x\rightarrow0}\frac{x\left(x^2+3x-2\right)}{x\left(x^4+4\right)}=\lim\limits_{x\rightarrow0}\frac{x^2+3x-2}{x^4+4}=-\frac{1}{2}\)
\(L_2=\lim\limits_{x\rightarrow+\infty}\frac{1-\frac{3}{x^2}+\frac{2}{x^3}}{\left(\frac{4}{x}-2\right)^3}=\frac{1}{\left(-2\right)^3}=-\frac{1}{8}\)
\(L_3=\lim\limits_{x\rightarrow-1}\frac{\left(2x+1\right)\left(x+1\right)}{x\left(x+1\right)}=\lim\limits_{x\rightarrow-1}\frac{2x+1}{x}=1\)
\(L_4=\lim\limits_{x\rightarrow2}\frac{x^2-4x+1}{4-x^2}=\frac{1}{0}=+\infty\)
\(L_5=\lim\limits_{x\rightarrow3}\frac{\sqrt{x+1}-2}{x-2}=\frac{0}{1}=0\)
\(L_6=\lim\limits_{x\rightarrow1}\frac{x+3-\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)\left(\sqrt{x+3}+x+1\right)}=\lim\limits_{x\rightarrow1}\frac{-\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(\sqrt{x+3}+x+1\right)}\)
\(=\lim\limits_{x\rightarrow1}\frac{-\left(x+2\right)}{\left(x+1\right)\left(\sqrt{x+3}+x+1\right)}=\frac{-3}{2.4}=-\frac{3}{8}\)
\(L_7=\lim\limits_{x\rightarrow+\infty}\frac{x^2+x+1-\left(x-1\right)^2}{\sqrt{x^2+x+1}+x-1}\lim\limits_{x\rightarrow+\infty}\frac{3x}{\sqrt{x^2+x+1}+x-1}=\lim\limits_{x\rightarrow+\infty}\frac{3}{\sqrt{1+\frac{1}{x}+\frac{1}{x^2}}+1-\frac{1}{x}}=\frac{3}{2}\)
\(L_8=\lim\limits_{x\rightarrow-\infty}\frac{x^2+x+1-\left(3x-2\right)^2}{\sqrt{x^2+x+1}+3x-2}=\lim\limits_{x\rightarrow-\infty}\frac{-8x^2+13x-3}{\sqrt{x^2+x+1}+3x-2}=\lim\limits_{x\rightarrow-\infty}\frac{-8+\frac{13}{x}-\frac{3}{x^2}}{-\sqrt{1+\frac{1}{x}+\frac{1}{x^2}}+3-\frac{2}{x}}=\frac{-8}{-1+3}=-4\)
Bài 1:
\(a=\lim\limits_{x\rightarrow-\infty}\frac{2\left|x\right|+1}{3x-1}=\lim\limits_{x\rightarrow-\infty}\frac{-2x+1}{3x-1}=\lim\limits_{x\rightarrow-\infty}\frac{-2+\frac{1}{x}}{3-\frac{1}{x}}=-\frac{2}{3}\)
\(b=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{9+\frac{1}{x}+\frac{1}{x^2}}-\sqrt{4+\frac{2}{x}+\frac{1}{x^2}}}{1+\frac{1}{x}}=\frac{\sqrt{9}-\sqrt{4}}{1}=1\)
\(c=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{1+\frac{2}{x}+\frac{3}{x^2}}+4+\frac{1}{x}}{\sqrt{4+\frac{1}{x^2}}+\frac{2}{x}-1}=\frac{1+4}{\sqrt{4}-1}=5\)
\(d=\lim\limits_{x\rightarrow+\infty}\frac{\frac{3}{x}-\frac{2}{x\sqrt{x}}+\sqrt{1-\frac{5}{x^3}}}{2+\frac{4}{x}-\frac{5}{x^2}}=\frac{1}{2}\)
Bài 2:
\(a=\lim\limits_{x\rightarrow-\infty}\frac{2+\frac{1}{x}}{1-\frac{1}{x}}=2\)
\(b=\lim\limits_{x\rightarrow-\infty}\frac{2+\frac{3}{x^3}}{1-\frac{2}{x}+\frac{1}{x^3}}=2\)
\(c=\lim\limits_{x\rightarrow+\infty}\frac{x^2\left(3+\frac{1}{x^2}\right)x\left(5+\frac{3}{x}\right)}{x^3\left(2-\frac{1}{x^3}\right)x\left(1+\frac{4}{x}\right)}=\frac{15}{+\infty}=0\)
Lời giải:
\(C=\lim\limits_{x\to +\infty}\left[x\sqrt[n]{(1+\frac{a_1}{x})(1+\frac{a_2}{x})...(1+\frac{a_n}{x})}-x\right]\)
\(=\lim\limits_{x\to +\infty}x\left[\sqrt[n]{(1+\frac{a_1}{x})(1+\frac{a_2}{x}).....(1+\frac{a_n}{x})}-1\right]\)
\(=\lim\limits _{x\to +\infty}\frac{\sqrt[n]{(1+\frac{a_1}{x})(1+\frac{a_2}{x}).....(1+\frac{a_n}{x})}-1}{(1+\frac{a_1}{x})(1+\frac{a_2}{x})..(1+\frac{a_n}{x})-1}.\frac{(1+\frac{a_1}{x})(1+\frac{a_2}{x})...(1+\frac{a_n}{x})-1}{\frac{1}{x}}\)
\(=\lim\limits _{x\to +\infty}(A.B)=\lim\limits_{x\to +\infty}A.\lim\limits_{x\to +\infty}B\)
Với $A$. Đặt \(\sqrt[n]{\prod_{i=1}^n (1+\frac{a_i}{x})}=u\). \(x\to +\infty\Rightarrow \frac{a_i}{x}\to 0\Rightarrow 1+\frac{a_i}{x}\to 1\Rightarrow u\to 1\)
\(\lim\limits_{x\to +\infty}A=\lim\limits_{u\to 1}\frac{u-1}{u^n-1}=\lim\limits_{u\to 1}\frac{1}{u^{n-1}+...+1}=\frac{1}{n}\)
Với $B$
\(\lim\limits _{x\to +\infty}B=\lim\limits _{x\to +\infty}\frac{1+\frac{a_1+a_2+..+a_n}{x}+\frac{a_1a_2+a_2a_3+...+a_{n-1}a_n}{x^2}+....-1}{\frac{1}{x}}\)
\(=\lim\limits _{x\to +\infty}\left(a_1+a_2+...+a_n+\frac{a_1a_2+...+a_{n-1}a_n}{x}+...\right)=a_1+a_2+..+a_n\)
Do đó: $C=\frac{a_1+a_2+...+a_n}{n}$
Đáp án C