K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 2 2020

Bạn tự hiểu là giới hạn khi x tiến tới 1 nhé

a/\(=lim\frac{\left(x-1\right)\left(x^{2015}+x^{2014}+...+x+1\right)}{\left(x-1\right)\left(x^{2014}+x^{2013}+...+x+1\right)}=lim\frac{x^{2015}+x^{2014}+...+x+1}{x^{2014}+x^{2013}+...+x+1}=\frac{2016}{2015}\)

b/ \(=lim\frac{\left(x-1\right)\left(x^{m-1}+x^{m-2}+...+x+1\right)}{\left(x-1\right)\left(x^{n-1}+x^{n-2}+...+x+1\right)}=lim\frac{x^{m-1}+...+1}{x^{n-1}+...+1}=\frac{m}{n}\)

Hoặc nếu bạn được sử dụng L'Hopital thì cứ việc đạo hàm tử-mẫu, lẹ hơn các trên nhiều

NV
10 tháng 4 2020

\(a=\lim\limits_{x\rightarrow1^+}\frac{\sqrt{x-1}+\sqrt{x}-1}{\sqrt{\left(x-1\right)\left(x+1\right)}}=\lim\limits_{x\rightarrow1^+}\left(\frac{1}{\sqrt{x+1}}+\frac{x-1}{\left(\sqrt{x}+1\right)\sqrt{\left(x-1\right)\left(x+1\right)}}\right)\)

\(=\lim\limits_{x\rightarrow1^+}\left(\frac{1}{\sqrt{x+1}}+\frac{\sqrt{x-1}}{\left(\sqrt{x}+1\right)\sqrt{x+1}}\right)=\frac{1}{\sqrt{2}}+0=\frac{1}{\sqrt{2}}\)

\(b=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x^{n-1}+x^{n-2}+...+x+1\right)}{\left(x-1\right)\left(x^{m-1}+x^{m-2}+...+x+1\right)}=\lim\limits_{x\rightarrow1}\frac{x^{n-1}+x^{n-2}+...+1}{x^{m-1}+x^{m-2}+...+1}=\frac{n}{m}\)

\(c=\lim\limits_{x\rightarrow1}\frac{x-1+x^2-1+...+x^n-1}{x-1}=\lim\limits_{x\rightarrow1}\frac{x-1}{x-1}+\lim\limits_{\rightarrow1}\frac{x^2-1}{x-1}+...+\lim\limits_{x\rightarrow1}\frac{x^n-1}{x-1}\)

Áp dụng kết quả câu b ta được:

\(c=\frac{1}{1}+\frac{2}{1}+...+\frac{n}{1}=1+2+..+n=\frac{n\left(n+1\right)}{2}\)

10 tháng 4 2020

Cảm ơn bạn nhé!

NV
1 tháng 4 2020

\(A=\lim\limits_{x\rightarrow0}\frac{\left(1+ax\right)^{\frac{1}{n}}-1}{x}=\lim\limits_{x\rightarrow0}\frac{\frac{a}{n}\left(1+ax\right)^{\frac{1-n}{n}}}{1}=\frac{a}{n}\)

\(B=\lim\limits_{x\rightarrow0}\frac{\left(1+ax\right)^{\frac{1}{n}}-1}{\left(1+bx\right)^{\frac{1}{m}}-1}=\lim\limits_{x\rightarrow0}\frac{\frac{a}{n}\left(1+ax\right)^{\frac{1-n}{n}}}{\frac{b}{m}\left(1+bx\right)^{\frac{1-m}{m}}}=\frac{am}{bn}\)

\(C=\lim\limits_{x\rightarrow0}\frac{\sqrt[3]{1+bx}\sqrt[4]{1+cx}\left(\sqrt{1+ax}-1\right)+\sqrt[4]{1+cx}\left(\sqrt[3]{1+bx}-1\right)+\left(\sqrt[4]{1+cx}-1\right)}{x}\)

\(C=\lim\limits_{x\rightarrow0}\sqrt[3]{1+bx}\sqrt[4]{1+cx}.\frac{\sqrt{1+ax}-1}{x}+\lim\limits_{x\rightarrow0}\sqrt[4]{1+cx}.\frac{\sqrt[3]{1+bx}-1}{x}+\lim\limits_{x\rightarrow0}\frac{\sqrt[4]{1+cx}-1}{x}\)

Từ câu A ta có: \(\lim\limits_{x\rightarrow0}\frac{\sqrt[n]{1+ax}-1}{x}=\frac{a}{n}\)

\(\Rightarrow C=\frac{a}{2}+\frac{b}{3}+\frac{c}{4}\)

NV
1 tháng 4 2020

Bạn sử dụng định lý L'Hopital cho giới hạn vô định:

\(\lim\limits_{x\rightarrow a}\frac{f\left(x\right)}{g\left(x\right)}=\lim\limits_{x\rightarrow a}\frac{f'\left(x\right)}{g'\left(x\right)}\)

1 tháng 4 2020

lim ( x ----> 0 ) \(\frac{\sqrt[m]{1+ax}-\sqrt[n]{1+bx}}{x}\)

= lim ( x----> 0 ) \(\frac{\sqrt[m]{1+ax}-1+1-\sqrt[n]{1+bx}}{x}\)

= lim ( x ---> 0 ) \(\frac{\sqrt[m]{1+ax}-1}{x}\)- lim ( x ---> 0 ) \(\frac{\sqrt[n]{1+bx}-1}{x}\)

= lim ( x ----> 0 ) \(\frac{ax}{x\left(\sqrt[m]{\left(1+ax\right)^{m-1}}+\sqrt[m]{\left(1+ax\right)^{m-2}}+...+1\right)}\)

- lim ( x ----> 0 ) \(\frac{bx}{x\left(\sqrt[n]{\left(1+ax\right)^{n-1}}+\sqrt[n]{\left(1+ax\right)^{n-2}}+...+1\right)}\)

= lim ( x -----> 0 ) \(\frac{a}{\sqrt[m]{\left(1+ax\right)^{m-1}}+\sqrt[m]{\left(1+ax\right)^{m-2}}+...+1}\)

- lim ( x ---> 0 )  \(\frac{b}{\sqrt[n]{\left(1+bx\right)^{n-1}}+\sqrt[n]{\left(1+bx\right)^{n-2}}+...+1}\)

\(\frac{a}{m}-\frac{b}{n}\)

1 tháng 4 2020

cảm ơn bạn

9 tháng 2 2021

Mình ko thấy đề bài

24 tháng 4 2020

= gì vậy ạ

NV
22 tháng 4 2020

Nếu

\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+x+1}-2\sqrt{x^2-x+1}\right)=\lim\limits_{x\rightarrow+\infty}x\left(\sqrt{1+\frac{1}{x}+\frac{1}{x^2}}-2\sqrt{1-\frac{1}{x}+\frac{1}{x^2}}\right)\)

\(=+\infty.\left(1-2\right)=-\infty\)

Nếu:

\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{x^2+x+1}-2\sqrt{x^2-x+1}\right)=\lim\limits_{x\rightarrow-\infty}x\left(-\sqrt{1+\frac{1}{x}+\frac{1}{x^2}}+2\sqrt{1-\frac{1}{x}+\frac{1}{x^2}}\right)\)

\(=-\infty.\left(-1+2\right)=-\infty\)

NV
15 tháng 2 2020

a/ Do \(x\rightarrow-3^+\) nên \(x>-3\Rightarrow x+3>0\Rightarrow\left|x+3\right|=x+3\)

\(\Rightarrow\lim\limits_{x\rightarrow-3^+}\frac{3x+9}{\left|x+3\right|}=\lim\limits_{x\rightarrow-3^+}\frac{3\left(x+3\right)}{x+3}=3\)

b/ \(=\lim\limits_{x\rightarrow0^+}\frac{\sqrt{x}\left(1-3\sqrt{x}\right)}{\sqrt{x}\left(4\sqrt{x}-2\right)}=\lim\limits_{x\rightarrow0^+}\frac{1-3\sqrt{x}}{4\sqrt{x}-2}=-\frac{1}{2}\)

Ở câu này \(x\rightarrow0^+\) có nghĩa \(x>0\), nó chỉ để căn thức xác định, ngoài ra ko có gì đặc biệt hết

c/ Tương tự câu c, cũng chỉ để căn thức xác định \(\left(x< 1\right)\)

\(\lim\limits_{x\rightarrow1^-}\frac{\sqrt{1-x}}{\left(1-x\right)\left(x+4\right)}=\lim\limits_{x\rightarrow1^-}\frac{1}{\sqrt{1-x}\left(x+4\right)}=+\infty\)

d/ Chắc bạn ghi nhầm đề, đây ko phải giới hạn dạng vô định (vì tử khác 0, mẫu bằng 0):

\(x\rightarrow\sqrt{2}^-\Rightarrow x< \sqrt{2}\Rightarrow x^4-4< 0\)

\(\Rightarrow\lim\limits_{x\rightarrow\sqrt{2}^-}\frac{\left|x-2\right|}{x^4-4}=-\infty\)

1 tháng 4 2020

\( A = \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^3} - 3{x^2} + 2}}{{{x^2} - 4x + 3}}\\ = \mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {x - 1} \right)\left( {{x^2} - 2x - 2} \right)}}{{\left( {x - 1} \right)\left( {x - 3} \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^2} - 2x - 2}}{{x - 3}} = \dfrac{{{1^2} - 2.1 - 2}}{{1 - 3}} = \dfrac{3}{2} \)

NV
17 tháng 5 2020

Đáp án A, khi \(x\rightarrow1\) thì \(x-2< 0\) nên biểu thức không xác định

\(\Rightarrow\) Giới hạn đã cho ko tồn tại