\(3x^2+5x-2\)

b,B=

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2018

a ) \(A=3x^2+5x-2\)

\(=3\left(x^2+\dfrac{5}{3}x-\dfrac{2}{3}\right)\)

\(=3\left(x^2+2x.\dfrac{5}{6}+\dfrac{25}{36}-\dfrac{49}{36}\right)\)

\(=3\left[\left(x+\dfrac{5}{6}\right)^2-\dfrac{49}{36}\right]\)

\(=3\left(x+\dfrac{5}{6}\right)^2-\dfrac{49}{12}\ge-\dfrac{49}{12}\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow x+\dfrac{5}{6}=0\Leftrightarrow x=-\dfrac{5}{6}\)

Vậy Min A là : \(-\dfrac{49}{12}\Leftrightarrow x=-\dfrac{5}{6}\)

b ) \(B=3x^2-4x+1\)

\(=3\left(x^2-\dfrac{4}{3}x+\dfrac{1}{3}\right)\)

\(=3\left(x^2-2x.\dfrac{2}{3}+\dfrac{4}{9}-\dfrac{1}{9}\right)\)

\(=3\left[\left(x-\dfrac{2}{3}\right)^2-\dfrac{1}{9}\right]\)

\(=3\left(x-\dfrac{2}{3}\right)^2-\dfrac{1}{3}\ge-\dfrac{1}{3}\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow x-\dfrac{2}{3}=0\Leftrightarrow x=\dfrac{2}{3}\)

Vậy Min B là : \(-\dfrac{1}{3}\Leftrightarrow x=\dfrac{2}{3}\)

c ) \(C=-x^2-3x-2\)

\(=-\left(x^2+3x+2\right)\)

\(=-\left(x^2+2x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{1}{4}\right)\)

\(=-\left[\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\right]\)

\(=-\left(x+\dfrac{3}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow x+\dfrac{3}{2}=0\Leftrightarrow x=-\dfrac{3}{2}\)

Vậy Max C là : \(\dfrac{1}{4}\Leftrightarrow x=-\dfrac{3}{2}\)

d ) \(D=-4-3x^2+2x\)

\(=-3\left(x^2-\dfrac{2}{3}x+\dfrac{4}{3}\right)\)

\(=-3\left(x^2-2x.\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{11}{9}\right)\)

\(=-3\left[\left(x-\dfrac{1}{3}\right)^2+\dfrac{11}{9}\right]\)

\(=-3\left(x-\dfrac{1}{3}\right)^2-\dfrac{11}{3}\le-\dfrac{11}{3}\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\)

Vậy Max D là : \(-\dfrac{11}{3}\Leftrightarrow x=\dfrac{1}{3}\)

:D

8 tháng 9 2018

A=3x2+5x-2=2x2+4x+2+x2 -4=2(x+1)2 +x2-4 >=-4

Vậy A min=-4

B=3x2-4x+1=2x2-4x+2+x2-1=2(x-1)2+x2-1>=-1

Vậy B min=-1

C=-x2-3x -2=-(x2+3x+2)=-(x2+2x.3/2+9/4-1/4)=-(x+3/2)2+1/4

Ta có -(x+3/2)2<=0

=>-(x+3/2)2+1/4<=1/4

=> C max=1/4

D=-4-3x2+2x=-3x2+2x-4=-3(x2-2x/3+4/3)

=-3(x2-2x.1/3+1/9+11/9)=-3(x-1/3)2-11/3

Ta có -3(x-1/3)2<=0

=>-3(x-1/3)2-11/3<=-11/3

Vậy D max=-11/3

25 tháng 8 2017

Ta có : x2 + 100x + 100

= x2 + 2.50.x + 2500 - 2400

= (x + 50)2 - 2400

Vì \(\left(x+50\right)^2\ge0\forall x\)

Nên : (x + 50)2 - 2400 \(\ge-2400\forall x\)

Vậy Amin = -2400 khi x = -50

23 tháng 11 2018

a) \(A=2x^2+2x+3\)

\(A=2\left(x^2+x+\frac{3}{2}\right)\)

\(A=2\left[x^2+2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{5}{4}\right]\)

\(A=2\left[\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\right]\)

\(A=2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=\frac{-1}{2}\)

b) Biến đổi mẫu thức :

\(3x^2+4x+15\)

\(=3\left(x^2+\frac{4}{3}x+5\right)\)

\(=3\left[x^2+2\cdot x\cdot\frac{2}{3}+\left(\frac{2}{3}\right)^2+\frac{41}{9}\right]\)

\(=3\left[\left(x+\frac{2}{3}\right)^2+\frac{41}{9}\right]\)

\(=3\left(x+\frac{2}{3}\right)^2+\frac{41}{3}\)

\(B=\frac{5}{3\left(x+\frac{2}{3}\right)^2+\frac{41}{3}}\ge\frac{5}{\frac{41}{3}}=\frac{15}{41}\)

Dấu "=" xảy ra \(\Leftrightarrow x+\frac{2}{3}=0\Leftrightarrow x=\frac{-2}{3}\)

c) \(C=-x^2+2x-2\)

\(C=-\left(x^2-2x+2\right)\)

\(C=-\left(x^2-2\cdot x\cdot1+1^2+1\right)\)

\(C=-\left[\left(x-1\right)^2+1\right]\)

\(C=-1-\left(x-1\right)^2\le-1\)

Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

d) Biến đổi mẫu thức tương tự câu b)

11 tháng 2 2020

\(P=\frac{xy}{\left|xy\right|}+\frac{x-y}{\left|x-y\right|}\cdot\left(\frac{x}{\left|x\right|}-\frac{y}{\left|y\right|}\right)\)

TH1: \(x,y>0\)

+) Xét \(x>y\)\(P=\frac{xy}{xy}+\frac{x-y}{x-y}\cdot\left(\frac{x}{x}-\frac{y}{y}\right)=1+1\cdot\left(1-1\right)=1\)

+) Xét \(x< y\)\(P=\frac{xy}{xy}+\frac{x-y}{y-x}\cdot\left(\frac{x}{x}-\frac{y}{y}\right)=1+\left(-1\right)\cdot\left(1-1\right)=1\)

TH2: \(x,y< 0\)

+) Xét \(x>y\)\(P=\frac{xy}{xy}+\frac{x-y}{x-y}\cdot\left(\frac{x}{-x}-\frac{y}{-y}\right)=1+1\cdot\left[-1-\left(-1\right)\right]=1\)

+) Xét \(x< y\)\(P=\frac{xy}{xy}+\frac{x-y}{y-x}\cdot\left(\frac{x}{-x}-\frac{y}{-y}\right)=1\)

TH3: \(x>0;y< 0\)\(P=\frac{xy}{-xy}+\frac{x-y}{x-y}\cdot\left(\frac{x}{x}-\frac{y}{-y}\right)=-1+1\cdot\left(1+1\right)=1\)

TH4: \(x< 0;y>0\)\(P=\frac{xy}{-xy}+\frac{x-y}{y-x}\cdot\left(\frac{x}{-x}-\frac{y}{y}\right)=-1+\left(-1\right)\cdot\left(-1-1\right)=1\)

Nói chung với mọi x, y thì P = 1

29 tháng 10 2018

\(A=x^2-8x+1=\left(x^2-8x+16\right)-15=\left(x+4\right)^2-15\)

Ta có \(\left(x+4\right)^2\ge0\Rightarrow\left(x+4\right)^2-15\le-15\)

\(\Rightarrow Max_A=-15\Leftrightarrow\left(x+4\right)^2-15=-15\)

\(\Leftrightarrow\left(x+4\right)^2=0\Leftrightarrow x=-4\)

29 tháng 10 2018

a) ta có: A = x^2 - 8x + 1 = x^2 - 2.4.x + 16 - 15 = (x-4)^2 -15

=> giá trị nhỏ nhất của A = -15

b) ta có: B = 4 - x^2 + 4x = - (x^2 -4x + 4) + 8 = -(x-2)^2 +8

=> giá trị lớn nhất của B = 8

c) ta có: C = 3x^2 - 2x + 1

\(^2\ \)=> 3C =9 x^2 - 6x + 3

3C = 9x^2 - 2.3.x + 1 + 2

3C = (3x-1)^2 + 2

=> giá trị nhỏ nhất của 3C = 2 => giá trị nhỏ nhất của C = 2/3

8 tháng 10 2016

1. D = 3( x2 - 2x.1/3 + 1/9) -1/3 +1

GTNN D = 5/6

dài quá, nản quá

 

9 tháng 10 2016

tks bn

25 tháng 7 2019

\(A=x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\)

Vậy \(A_{min}=1\Leftrightarrow x=-1\)

25 tháng 7 2019

\(B=x^2+4x=6=x^2+4x+4+2=\left(x+2\right)^2+2\ge2>0\)

Vậy \(B_{min}=2\Leftrightarrow x=-2\)

24 tháng 7 2018

@Nguyễn Nhật Minh

@Aki Tsuki

@Phùng Khánh Linh

@Nào Ai Biết

@Nguyễn Thanh Hằng

@Mysterious Person

giúp mk với

AH
Akai Haruma
Giáo viên
24 tháng 7 2018

Bài 1:

\(A=-x^2-5x+3=\frac{37}{4}-(x^2+5x+\frac{25}{4})\)

\(=\frac{37}{4}-(x+\frac{5}{2})^2\)

\((x+\frac{5}{2})^2\geq 0\Rightarrow A=\frac{37}{4}-(x+\frac{5}{2})^2\leq \frac{37}{4}-0=\frac{37}{4}\)

Vậy A(max)\(=\frac{37}{4}\Leftrightarrow x=\frac{-5}{2}\)

---------------

\(B=-2x^2-7x+9=\frac{121}{8}-2(x^2+\frac{7}{2}x+\frac{49}{16})\)

\(=\frac{121}{8}-2(x+\frac{7}{4})^2\)

\((x+\frac{7}{4})^2\ge 0\Rightarrow B=\frac{121}{8}-2(x+\frac{7}{4})^2\leq \frac{121}{8}-2.0=\frac{121}{8}\)

Vậy B(max)\(=\frac{121}{8}\Leftrightarrow x=\frac{-7}{4}\)

Các câu còn lại bạn cũng làm tương tự.

NV
24 tháng 6 2019

b/ \(3-100x+8x^2=8x^2+x-300\)

\(\Leftrightarrow-101x=-303\)

\(\Rightarrow x=3\)

c/ \(5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)

\(\Leftrightarrow25x+10-80x+10=24x+12-150\)

\(\Leftrightarrow-79x=-158\)

\(\Rightarrow x=2\)

d/ \(3\left(3x+2\right)-\left(3x+1\right)=12x+10\)

\(\Leftrightarrow9x+6-3x-1=12x+10\)

\(\Leftrightarrow-6x=5\)

\(\Rightarrow x=-\frac{5}{6}\)

e/ \(30x-6\left(2x-5\right)+5\left(x+8\right)=210+10\left(x-1\right)\)

\(\Leftrightarrow30x-12x+30+5x+40=210+10x-10\)

\(\Leftrightarrow13x=130\)

\(\Rightarrow x=10\)

NV
24 tháng 6 2019

\(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)

\(\Rightarrow A_{min}=-3\) khi \(x=2\)

\(B=4x^2+4x+11=\left(2x+1\right)^2+10\ge10\)

\(\Rightarrow B_{min}=10\) khi \(x=-\frac{1}{2}\)

\(C=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

\(\Rightarrow C_{min}=-36\) khi \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

\(D=-x^2-8x-16+21=21-\left(x+4\right)^2\le21\)

\(\Rightarrow C_{max}=21\) khi \(x=-4\)

\(E=-x^2+4x-4+5=5-\left(x-2\right)^2\le5\)

\(\Rightarrow E_{max}=5\) khi \(x=2\)

2 tháng 9 2018

\(A=x^2-3x+5\)

\(=x^2-3x+\frac{9}{4}+\frac{11}{4}\)

\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)

\(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow A\ge\frac{11}{4}\)

Dấu "=" xảy ra khi \(x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)

Vậy Min A = \(\frac{11}{4}\Leftrightarrow x=\frac{3}{2}\)

2 tháng 9 2018

a) \(A=x^2-3x+5\)

\("="\Leftrightarrow x=\frac{11}{4}\Rightarrow x=\frac{3}{2};\frac{11}{4}\)

b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)

\("="\Leftrightarrow x=5\Rightarrow x=0;5\)

c) \(C=4x-x^2+3\)

\("="\Leftrightarrow x=7\Rightarrow x=2;7\)

d) \(D=x^4+x^2+2\)

\("="\Leftrightarrow x=2\Rightarrow x=0;2\)

24 tháng 11 2019

a) Ta có: \(2x^2+2x+3=\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\frac{1}{\sqrt{2}}+\frac{1}{2}+\frac{5}{2}\)

\(=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)

\(\Rightarrow S\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)

Vậy \(S_{max}=\frac{6}{5}\Leftrightarrow\sqrt{2}x+\frac{1}{\sqrt{2}}=0\Leftrightarrow x=-\frac{1}{2}\)

b) Ta có: \(3x^2+4x+15=\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{41}{3}\)

\(=\left(\sqrt{3}x+\frac{2}{\sqrt{3}}\right)^2+\frac{41}{3}\ge\frac{41}{3}\)

\(\Rightarrow T\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)

Vậy \(T_{max}=\frac{15}{41}\Leftrightarrow\sqrt{3}x+\frac{2}{\sqrt{3}}=0\Leftrightarrow x=\frac{-2}{3}\)

24 tháng 11 2019

c) Ta có: \(-x^2+2x-2=-\left(x^2-2x+1\right)-1\)

\(=-\left(x-1\right)^2-1\le-1\)

\(\Rightarrow V\ge\frac{1}{-1}=-1\)

Vậy \(V_{min}=-1\Leftrightarrow x-1=0\Leftrightarrow x=1\)

d) Ta có: \(-4x^2+8x-5=-\left(4x^2-8x+5\right)\)

\(=-\left(4x^2-8x+4\right)-1\)

\(=-\left(2x-2\right)^2-1\le-1\)

\(\Rightarrow X\ge\frac{2}{-1}=-2\)

Vậy \(X_{min}=-2\Leftrightarrow2x-2=0\Leftrightarrow x=1\)