![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2+y^2=325\)
<=> \(\left(x+y\right)^2-2xy=325\)
Đặt: \(x+y=a;\)\(xy=b\)Khi đó ta có:
\(a-b=155\) (1)
và \(a^2-2b=325\)
Từ (1) ta có: \(b=a-155\) thay vào (2) ta được:
\(a^2-2\left(a-155\right)=325\)
giải ra tìm được: \(\orbr{\begin{cases}a=5\\a=-3\end{cases}}\) => \(\orbr{\begin{cases}a=5;b=-150\\a=-3;b=-158\end{cases}}\)
TH1: \(\hept{\begin{cases}a=5\\b=-150\end{cases}}\) ,=> \(\hept{\begin{cases}x+y=5\\xy=-150\end{cases}}\)
\(x^2+y^2=325\)
<=> \(\left(x-y\right)^2+2xy=325\)
<=> \(\left(x-y\right)^2=325-2xy=625\)
<=> \(\left|x-y\right|=25\)
=> \(\left|x^3-y^3\right|=\left|\left(x-y\right)\left(x^2+y^2+xy\right)\right|=\left|x-y\right|\left(x^2+y^2+xy\right)=4375\)
TH2: bn tự lm tiếp nhé
Cho hai số dương x,y thỏa mãn: 2x2+xy-y2=0. Tính giá trị biểu thức:
A = \(\frac{x^2y+xy^2}{x^3+y^3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
x2+2y2+2xy-4y+4=0
(x2+2xy+y2)+ (y2-4y+4) = 0
(x+y)2 + (y-2)2 = 0
Với mọi x, y ta luôn có
(x+y)2 >= 0
(y-2)2 >= 0
do đó (x+y)2 + (y-2)2 >= 0
Dấu = xảy ra khi
x+y=0 và y-2=0
=> x=-2 và y = 2
Thay vào B rồi tính ra B= -4
Ta có:
\(x^2+2y^2+2xy-4y+4=0\)
\(\left(x^2+2xy+y^2\right)+\left(y^2-4y+4\right)=0\)
\(\left(x+y\right)^2+\left(y-2\right)^2=0\)
Vì \(\left(x+y\right)^2+\left(y-2\right)^2\ge0\)vs mọi x, y
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=2\end{cases}}}\)
Thay x= -2, y=2 vào biểu thức B, ta đc:
\(B=\left(4+4+48\right)\div\left(-2-2\right)\)
\(B=56\div\left(-4\right)=-8\)
Vậy B= -8 tại x=-2, y=2
![](https://rs.olm.vn/images/avt/0.png?1311)
~ Bài 1:
Ta có: 1+2+...+232=\(\frac{\left(232+1\right)232}{2}\)=27028
Mà : 1+2+...+232=2n-1
Nên 2n-1 =27028
2n =27029
n =13514,5
Vậy n =13514,5
~ Bài 2:
Giả sử: \(x^4+y^4=z\) (1)
Có: xy=6
=> 2xy=12
Do đó: 2xyxy=12.6
\(2x^2y^2\)=72 (2)
Cộng (1),(2) vế theo vế:
\(x^4+2x^2y^2+y^4=72+z\)
\(\left(x^2+y^2\right)^2=72+z\)
\(15^2=72+z\)
225 =72+z
=> z =153
Vậy \(x^4+y^4=153\)
\(x^2+x\left(y-2\right)+\left(\frac{y-2}{2}\right)^2+y^2-\left(\frac{y-2}{2}\right)^2-y=0\)
\(\left(x+\frac{y-2}{2}\right)^2+\frac{3}{4}y^2-1=0\)
Bạn cho nhầm đề bài rồi. nên không thẻ tìm hết được x, y nhé