K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2015

\(x^2+x\left(y-2\right)+\left(\frac{y-2}{2}\right)^2+y^2-\left(\frac{y-2}{2}\right)^2-y=0\)

\(\left(x+\frac{y-2}{2}\right)^2+\frac{3}{4}y^2-1=0\)

Bạn cho nhầm đề bài rồi. nên không thẻ tìm hết được x, y nhé

13 tháng 1 2019

\(x^2+y^2=325\)

<=>  \(\left(x+y\right)^2-2xy=325\)

Đặt:  \(x+y=a;\)\(xy=b\)Khi đó ta có:

\(a-b=155\)   (1)

và  \(a^2-2b=325\)

Từ (1) ta có:   \(b=a-155\) thay vào (2) ta được:

\(a^2-2\left(a-155\right)=325\)

giải ra tìm được:  \(\orbr{\begin{cases}a=5\\a=-3\end{cases}}\)  =>  \(\orbr{\begin{cases}a=5;b=-150\\a=-3;b=-158\end{cases}}\)

TH1:  \(\hept{\begin{cases}a=5\\b=-150\end{cases}}\) ,=>  \(\hept{\begin{cases}x+y=5\\xy=-150\end{cases}}\)

\(x^2+y^2=325\) 

<=>   \(\left(x-y\right)^2+2xy=325\)

<=>  \(\left(x-y\right)^2=325-2xy=625\)

<=>  \(\left|x-y\right|=25\)

=>  \(\left|x^3-y^3\right|=\left|\left(x-y\right)\left(x^2+y^2+xy\right)\right|=\left|x-y\right|\left(x^2+y^2+xy\right)=4375\)

TH2: bn tự lm tiếp nhé

11 tháng 12 2017

x2+2y2+2xy-4y+4=0

(x2+2xy+y2)+ (y2-4y+4) = 0

(x+y)2 + (y-2)2 = 0

Với mọi x, y ta luôn có

(x+y)2 >= 0

(y-2)2 >= 0 

do đó (x+y)2 + (y-2)2 >= 0

Dấu = xảy ra khi

x+y=0 và y-2=0

=> x=-2 và y = 2

Thay vào B rồi tính ra B= -4

25 tháng 9 2019

Ta có:

\(x^2+2y^2+2xy-4y+4=0\)

\(\left(x^2+2xy+y^2\right)+\left(y^2-4y+4\right)=0\)

\(\left(x+y\right)^2+\left(y-2\right)^2=0\)

Vì \(\left(x+y\right)^2+\left(y-2\right)^2\ge0\)vs mọi x, y

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=2\end{cases}}}\)

Thay x= -2, y=2 vào biểu thức B, ta đc:

\(B=\left(4+4+48\right)\div\left(-2-2\right)\)

\(B=56\div\left(-4\right)=-8\)

Vậy B= -8 tại x=-2, y=2

19 tháng 11 2021

Địch bố mi

4 tháng 10 2017

~ Bài 1:

Ta có: 1+2+...+232=\(\frac{\left(232+1\right)232}{2}\)=27028

Mà   :  1+2+...+232=2n-1

Nên     2n-1           =27028

           2n              =27029

             n              =13514,5

Vậy        n              =13514,5

~ Bài 2:

Giả sử: \(x^4+y^4=z\)        (1)

  Có:  xy=6

    => 2xy=12

Do đó: 2xyxy=12.6

      \(2x^2y^2\)=72             (2)

     Cộng (1),(2) vế theo vế:

   \(x^4+2x^2y^2+y^4=72+z\)

            \(\left(x^2+y^2\right)^2=72+z\)  

                           \(15^2=72+z\)                   

                            225   =72+z

      =>                   z      =153

            Vậy \(x^4+y^4=153\)