\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2019

A= căn x-3+4/ căn x-3

A=1+4 / căn x-3

để A thuộc Z thì 4 chia hết cho x-3

hay x-3 là ước của 4

x-3 thuộc (1;-1;2;-2;4;-4)

x thuộc (4;2;5;1;7;-1)

vậy ....

27 tháng 3 2019

mình cần rất gấp

6 tháng 2 2018

\(A=\frac{\sqrt{x}-5}{\sqrt{x}+3}\)

a) \(A=\frac{\sqrt{\frac{1}{4}}-5}{\sqrt{\frac{1}{4}}+3}\)

\(A=\frac{\frac{1}{2}-5}{\frac{1}{2}+3}\)

\(A=\frac{\frac{-9}{2}}{\frac{7}{2}}\)

\(A=\frac{-9}{2}.\frac{2}{7}\)

\(A=\frac{-9}{7}\)

b) \(A=-1\Leftrightarrow\frac{\sqrt{x}-5}{\sqrt{x}+3}=-1\)

\(\Leftrightarrow-\sqrt{x}-3=\sqrt{x}-5\)

\(\Leftrightarrow-\sqrt{x}-\sqrt{x}=-5+3\)

\(\Leftrightarrow-2\sqrt{x}=-2\)

\(\Leftrightarrow\sqrt{x}=1\)

\(\Leftrightarrow x=1\)

vậy \(x=1\)

c) \(A=\frac{\sqrt{x}+3-8}{\sqrt{x}+3}\)

\(A=1-\frac{8}{\sqrt{x}+3}\)

\(\Leftrightarrow\sqrt{x}+3\inƯ\left(8\right)\)

\(\Leftrightarrow\sqrt{x}+3\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

lập bảng tự làm 

6 tháng 2 2018

\(A=\frac{\sqrt{\frac{1}{4}}-5}{\sqrt{\frac{1}{4}}+3}\)

\(A=\frac{\frac{1}{2}-5}{\frac{1}{2}+3}\)

\(A=\frac{-\frac{9}{2}}{\frac{7}{2}}=-\frac{9}{2}\cdot\frac{2}{7}=-\frac{9}{7}\)

9 tháng 3 2017

Ta có : A=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)=    \(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)  =      1+\(\frac{4}{\sqrt{x}-3}\)                                                                                                                        Để A có giá trị nguyên thi \(\sqrt{x}-3\)là ước của 4                                                                                                                                           \(\sqrt{x}-3\)= +-1;+-2;+-4                                                                                                                                                                                      Nếu \(\sqrt{x}-3\)=1 suy ra x=16                                                                                                                                                                      Nếu\(\sqrt{x}-3\)=-1 suy ra x=4                                                                                                                                                                        Nếu\(\sqrt{x}-3\)= 2 suy ra  x=25                                                                                                                                                                      Nếu \(\sqrt{x}-3\)=-2 suy ra x=1                                                                                                                                                                        Nếu \(\sqrt{x}-3\)=4 suy ra x=49                                                                                                                                                                      Neu  \(\sqrt{x}-3\)=-4 suy ra \(\sqrt{x}\)=-1 (loại)                                                                                                                    Vậy x=.......                                                                                                                                                                                                               Bạn thử cách này xem sao nhé mình cũng chưa thử cách này bao giờ

10 tháng 11 2016

a)Tại \(x=\frac{16}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{16}{9}}+1}{\sqrt{\frac{16}{9}}-1}=\frac{\frac{4}{3}+1}{\frac{4}{3}-1}=\frac{\frac{7}{3}}{\frac{1}{3}}=7\)

Tại \(x=\frac{25}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{25}{9}}+1}{\sqrt{\frac{25}{9}}-1}=\frac{\frac{5}{3}+1}{\frac{5}{3}-1}=\frac{\frac{8}{3}}{\frac{2}{3}}=4\)

b)Khi \(A=5\Rightarrow\frac{\sqrt{x}+1}{\sqrt{x}-1}=5\)(*)

Đk:\(\sqrt{x}-1\ne0\Rightarrow x\ne1;\sqrt{x}\ge0\Rightarrow x\ge0\)

Đặt \(\sqrt{x}+1=t\left(t\ge0\right)\),(*) trở thành

\(\frac{t}{t-2}=5\Rightarrow t=5\left(t-2\right)\)

\(\Rightarrow t=5t-10\)

\(\Rightarrow2t=5\Rightarrow t=\frac{5}{2}\)(thỏa mãn)

\(t=\frac{5}{2}\Rightarrow\sqrt{x}+1=\frac{5}{2}\)

\(\Rightarrow\sqrt{x}=\frac{3}{2}\Leftrightarrow\sqrt{x^2}=\left(\frac{3}{2}\right)^2\Leftrightarrow x=\frac{9}{4}\)(thỏa mãn)

Vậy \(x=\frac{9}{4}\)

 

 

 

14 tháng 5 2017

a) Thay \(x=\frac{16}{9}\) vào biểu thức ta có:

\(A=\frac{\sqrt{\frac{16}{9}}+1}{\sqrt{\frac{16}{9}}-1}=\frac{\frac{4}{3}+1}{\frac{4}{3}-1}=\frac{\frac{7}{3}}{\frac{1}{3}}=7\)

Vậy \(A=7\)

Thay \(x=\frac{25}{9}\) vào biểu thức ta có:

\(A=\frac{\sqrt{\frac{25}{9}}+1}{\sqrt{\frac{25}{9}}-1}=\frac{\frac{5}{3}+1}{\frac{5}{3}-1}=\frac{\frac{8}{3}}{\frac{2}{3}}=4\)

Vậy \(A=4\)

7 tháng 1 2017

để A nguyên thì \(A^2\)nguyên nên \(\left(\frac{\sqrt{x+1}}{\sqrt{x-3}}\right)^2\) nguyên \(\Leftrightarrow\frac{x+1}{x-3}\) nguyên \(\Rightarrow x+1⋮x-3\Leftrightarrow4⋮x-3\Rightarrow x-3\leftarrowƯ\left\{4\right\}\Leftrightarrow x-3\leftarrowƯ\left\{1,-1,2,-2,4,-4\right\}\)

\(\Leftrightarrow x\leftarrow\left\{4,2,5,1,7,-1\right\}\)Vậy x = 4,2,5,1,7,-1