K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2015

a/

\(=\left(\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{x-1-x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{1}\right)\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}}\)

b/ Biểu thức nhận giá trị dương khi

\(\sqrt{x}-1>=0\)

\(x>=1\)

Vậy với x>=1 thì biểu thức dương

c/ biểu thức nhận giá trị âm khi

\(\sqrt{x}-1<0\)

\(x<1\)

Vậy với x<1 thì bt âm

d/ Ta có

\(\frac{\sqrt{x}-1}{\sqrt{x}}=-5\)

\(<=>\frac{\sqrt{x}-1}{\sqrt{x}}+5=0\)

Quy đồng và rút gọn ta được

\(6\sqrt{x}-1=0\)

\(\sqrt{x}=\frac{1}{6}\)

\(x=\frac{1}{36}\)

Vậy với x=1/36 thì x=-5 

tick cho mình nha công sức mà

23 tháng 3 2021

a, \(P=\frac{\sqrt{x}-2}{\sqrt{x}+1}< 0\)

\(\Rightarrow\sqrt{x}-2< 0\)( vì \(\sqrt{x}+1>0\))

\(\Rightarrow\sqrt{x}>2\Rightarrow x>4\)

Vậy với P < 0 thì x > 4 

b, \(P=\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}+1-3}{\sqrt{x}+1}=1-\frac{3}{\sqrt{x}+1}\ge1\)

Dấu bằng xảy ra khi \(\sqrt{x}+1>0\)

Sửa đề: Có tổng 2 nghiệm bằng tích của chúng

Δ=(m+1)^2-4*2*(m-1)

=m^2+2m+1-8m+8=m^2-6m+9=(m-3)^2>=0

=>Phương trình luôn có hai nghiệm

x1+x2=x1*x2

=>(m+1)/2=(m-1)/2

=>m=0

15 tháng 5 2023

Sửa đề: Có tổng 2 nghiệm bằng tích của chúng

Δ=(m+1)^2-4*2*(m-1)

=m^2+2m+1-8m+8=m^2-6m+9=(m-3)^2>=0

=>Phương trình luôn có hai nghiệm

x1+x2=x1*x2

=>(m+1)/2=(m-1)/2

=>m=0

15 tháng 7 2021

\(a,x>0;x\ne4,9\)

\(b,Q=\left(\frac{1}{\sqrt{x}-3}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-3}\right)\)

\(Q=\left(\frac{\sqrt{x}-\sqrt{x}+3}{x-3\sqrt{x}}\right):\left(\frac{x-9-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)

\(Q=\frac{3}{x-3\sqrt{x}}:\frac{-5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(Q=\frac{3}{\sqrt{x}\left(\sqrt{x}-3\right)}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{-5}\)

\(Q=\frac{3\sqrt{x}-6}{-5\sqrt{x}}\)

\(c,Q< 0< =>\frac{3\sqrt{x}-6}{-5\sqrt{x}}\)

\(-5\sqrt{x}< 0\)

\(< =>3\sqrt{x}-6>0\)

\(\sqrt{x}>2\)

\(x>4\)