K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2015

vì x+y=4 nền (x+y)^2=4^2                                                                                                                                                                                            =x^2+ 2xy+y^2=16        ma  xy=5 nên 2xy=10  ta có x^2+y^2+10=16 ; x^2+y^2= 16-10                                                                                                                                                                                     x^2+y^2=6                                     kết quả mik là z đó nhưng k biết có đúng k bn ak

24 tháng 8 2017

HD:

          Dễ thấy  b = 1, d = 2, e = 4 đặt y = x2 – 2 suy ra y2 = x4 – 4x2 + 4

Biến đổi  P(x) = x4 – 4x2 + 4 – x3 – 6x2 + 2x

                               = (x2 – 2)2 – x(x2 – 2) – 6x2

          Từ đó  Q(y) = y2 – xy – 6x2

          Tìm m, n sao cho  m.n = - 6x2 và m + n = - x  chọn m = 2x, n = -3x

          Ta có:  Q(y) = y2 + 2xy – 3xy – 6x2

                             = y(y + 2x) – 3x(y + 2x)

                             = (y + 2x)(y – 3x)

          Do đó:  P(x) = (x2 + 2x – 2)(x2 – 3x – 2).

24 tháng 8 2017

a/ tìm GT của x+y biết x-y=2; x.y=99 và y<0
Vì x-y=2 nên  
\(\Leftrightarrow\)  
\(\Leftrightarrow\)  
\(\Leftrightarrow\)  
\(\Leftrightarrow\)  
\(\Leftrightarrow\) x+y=20 hoặc x+y=-20
mà y<0 nên x+y=20

1 tháng 10 2015

thay y=x-2 vào xy=99 có x(x-2)-99=0 => (x-1)2-100=0 nên x=11 hoặc x=-9

vì y<0 nên x<0 do đó thay x=-9 có y=-11 nên x+y=-20

1 tháng 10 2015

Thay y=x-2 vào x.y=99 ta có:

x(x-2)-99=0 => x2-2x-99=0 => x2-2x+1-100=0 => (x-1)2-102=0 => (x-1-10)(x-1+10)=0

Vậy x=11 hoặc x = -9

Vì y<0 nên x<0, vậy x=-9 => y= -11 nên x+y = -20

 

20 tháng 11 2015

20 bạn ạ . x = 11 ; y = 9

7 tháng 3 2017

ai giúp mình được không?

7 tháng 3 2017

\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}=\frac{1}{x^2+y^2}+\frac{4}{2xy}\)

Áp dụng BĐT C-S dạng Engel ta có: 

\(A=\frac{1}{x^2+y^2}+\frac{4}{2xy}=\frac{1^2}{x^2+y^2}+\frac{2^2}{2xy}\)

\(\ge\frac{\left(1+2\right)^2}{x^2+y^2+2xy}=\frac{3^2}{\left(x+y\right)^2}=9\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

Vậy với \(x=y=\frac{1}{2}\) thì \(A_{Min}=9\)