Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do tam giác ABC đều nên tâm I cũng là trọng tâm tam giác. Suy ra IE=r, IC=2r và
\(CE=\sqrt{IC^2-IE^2}=r\sqrt{3}\Rightarrow AC=2CE=2r\sqrt{3}\)
Diện tích tam giác ABC là
\(S=\frac{1}{2}.3r.2r\sqrt{3}=3r^2\sqrt{3}=9\)
H�nh ?a gi�c TenDaGiac1: DaGiac[A, B, 3] H�nh ?a gi�c TenDaGiac1: DaGiac[A, B, 3] ???ng tr�n f: ???ng tr�n qua D v?i t�m I G�c ?: G�c gi?a A, C, D G�c ?: G�c gi?a A, C, D G�c ?: G�c gi?a A, C, D ?o?n th?ng a: ?o?n th?ng [A, B] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng b: ?o?n th?ng [B, C] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng c: ?o?n th?ng [C, A] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng d: ?o?n th?ng [C, D] ?o?n th?ng e: ?o?n th?ng [E, B] A = (-1.1, 0.5) A = (-1.1, 0.5) A = (-1.1, 0.5) B = (2.66, 0.5) B = (2.66, 0.5) B = (2.66, 0.5) ?i?m C: DaGiac[A, B, 3] ?i?m C: DaGiac[A, B, 3] ?i?m C: DaGiac[A, B, 3] ?i?m D: Trung ?i?m c?a A, B ?i?m D: Trung ?i?m c?a A, B ?i?m D: Trung ?i?m c?a A, B ?i?m E: Trung ?i?m c?a C, A ?i?m E: Trung ?i?m c?a C, A ?i?m E: Trung ?i?m c?a C, A ?i?m I: Giao ?i?m c?a d, e ?i?m I: Giao ?i?m c?a d, e ?i?m I: Giao ?i?m c?a d, e
Xét ptr hoành độ của `(d)` và `(P)` có:
`(m-1)x^2+2mx+3m-1=2x+m`
`<=>(m-1)x^2+2(m-1)x+2m-1=0` `(1)`
`(d)` tiếp xúc `(P)<=>` Ptr `(1)` có nghiệm kép
`<=>{(a \ne 0),(\Delta'=0):}`
`<=>{(m-1 \ne 0),((m-1)^2-(m-1)(2m-1)=0):}`
`<=>{(m \ne 1),(-m(m-1)=0):}`
`<=>m=0`
`->B`
Phương trình hoành độ giao điểm : \(m-1x2+2mx+3m-1=2x+m\)
\(\Leftrightarrow m-1x2+2m-1x+2m-1=0\)
Để d tiếp xúc với P khi và chỉ khi phương trình có nghiệm kép
\(\Leftrightarrow m-1\ne0\Delta'=m-15-m-12m-1=-mm-1=0\) \(\Leftrightarrow m\ne1m=0m=1\Leftrightarrow m=0\)
\(\Rightarrow\) chọn \(B\)
\(y=\sqrt{x-m}+\sqrt{2x-m-1}\)
ĐKXĐ: \(\hept{\begin{cases}x-m\ge0\\2x-m-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge m\\x\ge\frac{m+1}{2}\end{cases}}\)
Hàm số xác định trên \(\left(0;+\infty\right)\) có:
\(\Leftrightarrow\hept{\begin{cases}m\le0\\\frac{m+1}{2}\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}m\le0\\m\le-1\end{cases}}\)
\(\Rightarrow m\le-1\)
Gọi pt d có dạng \(y=ax+b\)
\(f\left(x\right)-g\left(x\right)\le0\Leftrightarrow x^2-ax-b\le0\)
Do nghiệm của BPT là \(\left[1;3\right]\Rightarrow f\left(x\right)-g\left(x\right)=0\) có 2 nghiệm pb \(\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Theo Viet đảo: \(\left\{{}\begin{matrix}a=3+1\\-b=3.1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-3\end{matrix}\right.\) \(\Rightarrow y=4x-3\Leftrightarrow4x-y-3=0\)
\(\Rightarrow A\left(1;1\right)\) ; \(B\left(3;9\right)\)
Diện tích tam giác ABM lớn nhất khi \(d\left(M;d\right)\) lớn nhất
\(d\left(M;d\right)=\frac{\left|4m-m^2-3\right|}{\sqrt{17}}=\frac{\left|m^2-4m+3\right|}{\sqrt{17}}=\frac{\left|\left(m-2\right)^2-1\right|}{\sqrt{17}}\le\frac{1}{\sqrt{17}}\)
Dấu "=" xảy ra khi \(m=2\)
a) Với m = 2 phương trình trở thành 2x + 4 = 0 có 1 nghiệm. Loại giá trị m = 2.
Phương trình vô nghiệm nếu:
\(\begin{cases}m-2\ne0\\\Delta'=\left(2m-3\right)^2-\left(m-2\right)\left(5m-6\right)<0\end{cases}\)
<=> \(\begin{cases}m-2\ne0\\-m^2+4m-3<0\end{cases}\)
<=> m < 1 ∪ m > 3.
b) Với m = 3, phương trình trở thành: - 6x + 5 = 0 có nghiệm. Loại trường hợp m = 3.
Phương trình vô nghiệm vô khi và chỉ khi:
\(\begin{cases}m-3\ne0\\\Delta=\left(m+3\right)^2-\left(3-m\right)\left(m+2\right)<0\end{cases}\)
<=> \(-\frac{3}{2}\) < m < - 1.
a) Với m = 2 phương trình trở thành 2x + 4 = 0 có 1 nghiệm. Loại giá trị m = 2.
Phương trình vô nghiệm nếu:
{m−2≠0Δ ′ =(2m−3) 2 −(m−2)(5m−6)<0 {m−2≠0Δ′=(2m−3)2−(m−2)(5m−6)<0
<=> {m−2≠0−m 2 +4m−3<0 {m−2≠0−m2+4m−3<0
<=> m < 1 ∪ m > 3.
b) Với m = 3, phương trình trở thành: - 6x + 5 = 0 có nghiệm. Loại trường hợp m = 3.
Phương trình vô nghiệm vô khi và chỉ khi:
{m−3≠0Δ=(m+3) 2 −(3−m)(m+2)<0 {m−3≠0Δ=(m+3)2−(3−m)(m+2)<0
<=> <!--[if !vml]-->−32 −32 <!--[endif]--> < m < - 1.
Bài 2.
\(\left(m^2-3m+2\right)x+m-1>0,\forall x\inℝ\)
\(\Leftrightarrow\left(m-1\right)\left(m-2\right)x>1-m,\forall x\inℝ\)(1)
Với \(m=1\):
\(0x>0\)vô lí.
Với \(m=2\): \(0x>-1\)đúng với mọi \(x\inℝ\).
Với \(m\ne1,m\ne2\): (1) tương đương với:
\(x>-\frac{1}{m-2}\)hoặc \(x< -\frac{1}{m-2}\)khi đó không đúng với mọi \(x\)thuộc \(ℝ\).
Vậy \(m=2\)thỏa mãn yêu cầu bài toán.
Bài 1.
\(n^3+3n^2-4n+1=n^3-n^2+4n^2-4n+1\)
\(=n^2\left(n-1\right)+4n\left(n-1\right)+1=n\left(n-1\right)\left(n+4\right)+1\)
Có \(n\left(n-1\right)\)là tích hai số tự nhiên liên tiếp nên là số chẵn.
Do đó \(n\left(n-1\right)\left(n+4\right)+1\)là số lẻ.
Khi đó không thể chia hết cho \(6\).
Do đó mệnh đề đã cho là sai.
ta có , theo định lí viet nên : \(\hept{\begin{cases}x_1+x_2=-m\\x_1x_2=\frac{m^2-2}{2}\end{cases}\Rightarrow}x_1x_2=\frac{\left(x_1+x_2\right)^2-2}{2}\Leftrightarrow x_1^2+x_2^2=2\)
.ta có
\(A=2x_1x_2+\frac{3}{x_1^2+x_2^2+2x_1x_2+2}=2x_1x_2+\frac{3}{2x_1x_2+4}\)
Mà \(2=x_1^2+x_2^2\ge2\left|x_1x_2\right|\Rightarrow-1\le x_1x_2\le1\)
trên đọna [-1,1] hàm trên đồng biến nên : \(min=-2+\frac{3}{-2+4}=-\frac{1}{2}\)
\(m=2+\frac{3}{2+4}=\frac{5}{2}\)
lỗi ạ
lx