Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=x^2-x\sqrt{y}+x+y-\sqrt{y}+1\left(y\ge0\right)\Rightarrow4A=4x^2-4x\sqrt{y}+4x+4y-4\sqrt{y}+4\)
\(4A=\left(2x\right)^2-4x\left(\sqrt{y}-1\right)+\left(\sqrt{y}-1\right)^2-\left(\sqrt{y}-1\right)^2+4y-4\sqrt{y}+4\)
\(=\left(2x-\sqrt{y}+1\right)^2+3y-2\sqrt{y}+3\)
Ta có \(\left(2x-\sqrt{y}+1\right)^2\ge0,\forall x;y\ge0\)
\(3y-2\sqrt{y}+3=3\left(y-\frac{2}{3}\sqrt{y}+1\right)=3\left[\left(y-2\sqrt{y}\frac{1}{3}+\frac{1}{9}\right)+\frac{8}{9}\right]=3\left(\sqrt{y}-\frac{1}{3}\right)^2+\frac{8}{3}\ge\frac{8}{3}\)
Do đó \(4A\ge\frac{8}{3}\Leftrightarrow A\ge\frac{2}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{y}=\frac{1}{3}\\2x-\sqrt{y}+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{1}{9}\\x=-\frac{1}{3}\end{cases}}}\)
Ta chứng minh được:
\(0\le x:y\le1\)
\(\Rightarrow x\ge x^2;y\ge y^2;xy\ge0\)
\(P^2=8+5\left(x+y\right)+2\sqrt{16+20\left(x+y\right)+25xy}\)
\(P^2\ge8+5\left(x^2+y^2\right)+2\sqrt{16+20\left(x^2+y^2\right)}\)
\(P^2\ge8+5+2\sqrt{16+20}=25\)
\(\Rightarrow P\ge5\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}x=0;y=1\\x=1;y=0\end{cases}}\)
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
\(P=\frac{3x-6\sqrt{x}+7}{2\sqrt{x}-2}+\frac{y-4\sqrt{x}+10}{\sqrt{y}-2}\)
\(=\frac{3\left(\sqrt{x}-1\right)}{2}+\frac{4}{2\left(\sqrt{x}-1\right)}+\left(\sqrt{y}-2\right)+\frac{6}{\sqrt{y-1}}\)
\(=\frac{3\left(\sqrt{x}-1\right)}{2}+\frac{3}{2\left(\sqrt{x}-1\right)}+\left(\sqrt{y}-2\right)+\frac{4}{\left(\sqrt{y}-2\right)}+\frac{4}{2\left(\sqrt{y}-2\right)}+\frac{1}{2\left(\sqrt{x}-1\right)}\)
\(\ge2.\sqrt{\frac{3}{2}.\frac{3}{2}}+2\sqrt{4}+\frac{\left(1+2\right)^2}{2\left(\sqrt{x}+\sqrt{y}-3\right)}\)
\(=3+4+\frac{3}{2}=\frac{17}{2}\)
Dấu "=" xảy ra <=> x = 4 và y = 16
Q = (x +1 -1)/(x +1) + (y +1 -1)/(y +1) + (z +1 -1)/ (z+1)
Q = 3 - [ 1/(x+1) + 1/(y +1) + 1/(z +1) ]
Áp dụng bđt cô si cơ bản, ta có:
[(x +1) + (y +1) + (z +1)]. [1/(x+1) + 1/(y +1) + 1/(z +1) ] ≥9
=> 1/(x+1) + 1/(y +1) + 1/(z +1) ≥ 9/4 ( do x + y + z =1)
=> P ≤ 3/4
Dấu " =" xảy ra <=> x = y = z = 1/3
Vậy maxP = 3/4
Q = (x +1 -1)/(x +1) + (y +1 -1)/(y +1) + (z +1 -1)/ (z+1)
Q = 3 - [ 1/(x+1) + 1/(y +1) + 1/(z +1) ]
Áp dụng bđt cô si cơ bản, ta có:
[(x +1) + (y +1) + (z +1)]. [1/(x+1) + 1/(y +1) + 1/(z +1) ] ≥9
=> 1/(x+1) + 1/(y +1) + 1/(z +1) ≥ 9/4 ( do x + y + z =1)
=> P ≤ 3/4
Dấu " =" xảy ra <=> x = y = z = 1/3
Vậy maxP = 3/4