K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2017

D=vì /x+3/ >=0

         /x-4/ >=0

nên để D có gtnn thì x+3=0 => x= -3 =>/x-4/=/-7/=7

                                 x-4=0 => x=4 =>/x+3/=/7/=7

Vậy D có gtnn là 7

2 tháng 9 2020

A = x2 + 4x + 9

= ( x2 + 4x + 4 ) + 5

= ( x + 2 )2 + 5 ≥ 5 ∀ x

Đẳng thức xảy ra <=> x + 2 = 0 => x = -2

=> MinA = 5 <=> x = -2

B = x2 + 6x + 12

= ( x2 + 6x + 9 ) + 3

= ( x + 3 )2 + 3 ≥ 3 ∀ x

Đẳng thức xảy ra <=> x + 3 = 0 => x = -3

=> MinB = 3 <=> x = -3

C = x2 + 3x + 6

= ( x2 + 3x + 9/4 ) + 15/4

= ( x + 3/2 )2 + 15/4 ≥ 15/4 ∀ x

Đẳng thức xảy ra <=> x + 3/2 = 0 => x = -3/2

=> MinC = 15/4 <=> x = -3/2

D = x2 + 5x + 10

= ( x2 + 5x + 25/4 ) + 15/4

= ( x + 5/2 )2 + 15/4 ≥ 15/4 ∀ x

Đẳng thức xảy ra <=> x + 5/2 = 0 => x = -5/2

=> MinD = 15/4 <=> x = -5/2

E = 2x2 + 7x + 5

= 2( x2 + 7/2x + 49/16 ) - 9/8

= 2( x + 7/4 )2 - 9/8 ≥ -9/8 ∀ x

Đẳng thức xảy ra <=> x + 7/4 = 0 => x = -7/4

=> MinE = -9/8 <=> x = -7/4

F = 3x2 + 8x + 9

= 3( x2 + 8/3x + 16/9 ) + 11/3

= 3( x + 4/3 )2 + 11/3 ≥ 11/3 ∀ x

Đẳng thức xảy ra <=> x + 4/3 = 0 => x = -4/3

=> MinF = 11/3 <=> x = -4/3

27 tháng 3 2020

a) Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow A=\left(x+1\right)^2-3\ge-3\)

Dấu " = " xảy ra khi 

\(\left(x+1\right)^2=0\)

\(x+1=0\)

\(x=-1\)

Vậy \(x=-1\)khi \(GTNN=-3\)

B:C: tương tự

d) Ta có: \(\left(2x-1\right)^{18}\ge0\forall x\)

              \(\left(y+2\right)^2\ge0\forall y\)

\(\Rightarrow D=\left(2x-1\right)^{18}+\left(y+2\right)^2+7\ge7\)

Dấu " = " xảy ra khi \(\hept{\begin{cases}\left(2x-1\right)^{18}=0\\\left(y+2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x-1=0\\y+2=0\end{cases}\Rightarrow}\hept{\begin{cases}2x=1\\y=-2\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=-2\end{cases}}}\)

Vậy \(x=\frac{1}{2};y=-2\)khi \(GTNN=7\)

e) \(\left|-2x+6\right|\ge0\)

\(\Rightarrow E=\left|-2x+6\right|+12\ge12\)

Dấu " = " xảy ra khi \(\left|-2x+6\right|=0\Rightarrow-2x=-6\Rightarrow x=3\)

Vậy x = 3 khi đạt GTNN = 12

F ; G tương tự

hok tốt!!

27 tháng 3 2020

+) A=(x+1)2 - 3  

Vì  (x+1)2 \(\ge\)0 nên (x+1)2 - 3 \(\ge\) - 3 .Dấu "=" xảy ra \(\Leftrightarrow\)(x+1)2 = 0   \(\Leftrightarrow\)x = - 1

Vậy min A = - 3 khi x = -1

+) B=(2x-5)20 + 9  

Vì (2x-5)20 \(\ge\)0 nên (2x-5)20+9\(\ge\)9.Dấu "=" xảy ra \(\Leftrightarrow\)(2x - 5)20=0    \(\Leftrightarrow\)x=\(\frac{5}{2}\)

Vậy min B=9 khi x=\(\frac{5}{2}\)

Những phần khác cũng làm tương tự :

+) minC= - 5 khi x=\(\frac{4}{3}\)

+) minD= 7 khi x=\(\frac{1}{2}\)và y= - 2

+) minE=12 khi x=3

+) min F = -17 khi x=5

+) min G = -12 khi x= - 4

10 tháng 9 2017

ta có \(A=x^2-5x+3=x^2-\frac{2.x.5}{2}+\frac{5^2}{4}-\frac{13}{4}=\left(x-\frac{5}{2}\right)^2-\frac{13}{4}\)

vì \(\left(x-\frac{5}{2}\right)^2\ge0\Rightarrow A\ge-\frac{13}{4}\)

dáu = xảy ra <=> x=5/2

b) ta có \(B=2x^2-4x+5=2\left(x^2-2x+\frac{5}{2}\right)\) \(=2\left(x^2-2x+1+\frac{3}{2}\right)=2\left[\left(x-1\right)^2+\frac{3}{2}\right]=2\left(x-1\right)^2+3\)

vì \(2\left(x-1\right)^2\ge0\Rightarrow B\ge3\)

dấu = xảy ra <=> x=1

19 tháng 12 2019

đúng

19 tháng 12 2019

😋 😋 😋

29 tháng 5 2016

a/ 
A=5x-x^2 =-(x^2-5x) = -[(x-5/2)^2 -25/4] = -(x-5/2)^2 +25/4 <= 25/4 

Vậy giá trị lớn nhất là 25/4 khi x=5/2 

b/ B=x-x^2 = -(x^2-x) = -[(x-1/2)^2 -1/4] =-(x-1/2)^2 +1/4 <= 1/4 

Vậy giá trị lớn nhất là 1/4 khi x=1/2 

c/4x-x^2+3 =-(x^2-4x+3) = -[(x-2)^2 -1] =-(x-2)^2 +1 <= 1 
Vậy lớn nhất là 1 khi x=2 

d/-x^2 +6x-11 = -[x^2-6x+11) = -[(x-3)^2 +2] =-(x-3)^2 -2 <= -2 
Vậy lớn nhất là bằng -2 khi x=3 

e/ 5-8x-x^2 =-(x^2 +8x-5) = -[(x+4)^2 -21] = -(x+4)^2 +21 <=21 
Vay lớn nhất là 21 khi x=-4 

f: 4x-x^2+1=-(x^2-4x-1) =-[(x-2)^2 -5] = -(x-2)^2 +5 <= 5 
Vậy lớn nhất bằng 5 khi x=2

29 tháng 5 2016

chờ tí nhé 

25 tháng 7 2020

a) \(A=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\)

\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2+1\ge1\)

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

Vậy AMin = 1 khi x = 2

b) B = \(2x^2-4x-6=2\left(x^2-2x-3\right)=2\left(x^2-2x+1\right)-8=2\left(x-1\right)^2-8\)

\(\left(x-1\right)^2\ge0\forall x\Rightarrow2\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2-8\ge-8\)

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

Vậy BMin = -8 khi x = 1

c) C = \(3x^2+9x+6=3\left(x^2+3x+2\right)=3\left(x^2+3x+\frac{9}{4}\right)-\frac{3}{4}=3\left(x+\frac{3}{2}\right)^2-\frac{3}{4}\)

\(\left(x+\frac{3}{2}\right)^2\ge0\forall x\Rightarrow3\left(x+\frac{3}{2}\right)^2\ge0\Rightarrow3\left(x+\frac{3}{2}\right)^2-\frac{3}{4}\ge-\frac{3}{4}\forall x\)

Đẳng thức xảy ra <=> x + 3/2 = 0 => x = -3/2

Vậy CMin = -3/4 khi x = -3/2

d) D = \(5x^2+5x+1=5\left(x^2+x+\frac{1}{5}\right)=5\left(x^2+x+\frac{1}{4}\right)-\frac{1}{4}=5\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\)

\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow5\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow5\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\forall x\)

Đẳng thức xảy ra <=> x + 1/2 = 0 => x = -1/2

Vậy DMin = -1/4 khi x = -1/2

nhanh lên các bạn